|
|
xi | |
|
1 The Ubiquitous Nature Of Chalcogenides In Science And Technology |
|
|
1 | (30) |
|
|
|
|
|
|
|
1 | (1) |
|
1.2 Chalcogenides in 3D form |
|
|
2 | (7) |
|
1.2.1 Monocrystalline CdTe solar cells |
|
|
2 | (1) |
|
1.2.2 II-VI magnetic semiconductors |
|
|
3 | (1) |
|
1.2.3 Electronic and optical effects in II1-xMnxVI alloys |
|
|
4 | (1) |
|
1.2.4 Miscellaneous II-Vl-based diluted magnetic semiconductors |
|
|
5 | (2) |
|
1.2.5 Chalcogenide lead salts |
|
|
7 | (2) |
|
1.2.6 Chalcogenide spinels |
|
|
9 | (1) |
|
1.3 Two-dimensional chalcogenide structures |
|
|
9 | (10) |
|
1.3.1 Epitaxially-formed chalcogenides |
|
|
9 | (3) |
|
1.3.2 2D "van der Waals" chalcogenides |
|
|
12 | (3) |
|
1.3.3 Interface phenomena in chalcogenide structures |
|
|
15 | (4) |
|
1.4 Chalcogenides beyond 2D |
|
|
19 | (3) |
|
1.4.1 One-dimensional and quasi-one-dimensional chalcogenides |
|
|
19 | (1) |
|
1.4.2 Zero-dimensional chalcogenide structures |
|
|
20 | (2) |
|
|
22 | (1) |
|
|
23 | (8) |
|
2 Thermoelectric Applications Of Chalcogenides |
|
|
31 | (26) |
|
|
|
|
|
|
31 | (3) |
|
2.1.1 Thermoelectric effect |
|
|
32 | (1) |
|
2.1.2 Thermoelectric efficiency |
|
|
32 | (2) |
|
2.2 Nanostructure engineering |
|
|
34 | (4) |
|
2.2.1 Bottom-up and top-down fabrication |
|
|
34 | (1) |
|
2.2.2 Consolidation method |
|
|
35 | (1) |
|
2.2.3 Introducing nanostructures |
|
|
36 | (1) |
|
2.2.4 Introducing nanoprecipitates |
|
|
37 | (1) |
|
|
38 | (5) |
|
|
38 | (2) |
|
2.3.2 Introducing point defect |
|
|
40 | (1) |
|
2.3.3 Introducing element deficiency |
|
|
40 | (1) |
|
|
41 | (2) |
|
2.4 Band structure engineering |
|
|
43 | (1) |
|
2.5 Crystal structure engineering |
|
|
44 | (5) |
|
2.5.1 Original complex structure |
|
|
44 | (1) |
|
2.5.2 Peierls distortion structure |
|
|
45 | (1) |
|
|
46 | (2) |
|
2.5.4 Increase the degree of orientation |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
51 | (6) |
|
3 Lead Salt Photodetectors And Their Optoelectronic Characterization |
|
|
57 | (10) |
|
|
|
|
|
|
57 | (1) |
|
|
57 | (2) |
|
3.3 Lead salt detector fabrication |
|
|
59 | (1) |
|
3.4 Lead salt detector characterization |
|
|
60 | (4) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
64 | (3) |
|
4 Optical Dispersion Of Ternary II---VI Semiconductor Alloys |
|
|
67 | (52) |
|
|
|
|
67 | (5) |
|
4.1.1 The classical picture of dispersion |
|
|
67 | (2) |
|
4.1.2 Electronic band structure and dispersion |
|
|
69 | (2) |
|
4.1.3 The phenomenological dispersion model |
|
|
71 | (1) |
|
|
72 | (11) |
|
4.2.1 Determination of the energy gap EH(x) |
|
|
73 | (3) |
|
4.2.2 Indices of refraction n(x) |
|
|
76 | (7) |
|
|
83 | (8) |
|
4.3.1 Semi-empirical model |
|
|
83 | (2) |
|
4.3.2 Improvements of SEO model |
|
|
85 | (3) |
|
4.3.3 Comparison between various semi-empirical fits for ZnTe |
|
|
88 | (3) |
|
4.4 Data analysis and discussion |
|
|
91 | (8) |
|
4.4.1 Experimental results for ternary II-VI alloys |
|
|
91 | (4) |
|
|
95 | (4) |
|
4.5 Physical interpretation and discussion |
|
|
99 | (8) |
|
4.5.1 Physical meaning of fitting parameters |
|
|
99 | (6) |
|
4.5.2 Optical dispersion and ionicity |
|
|
105 | (2) |
|
|
107 | (2) |
|
|
109 | (10) |
|
5 Group-Iv Monochalcogenides Ges, Gese, Sns, Snse |
|
|
119 | (34) |
|
|
|
|
|
119 | (1) |
|
5.2 Crystal lattice and band structure calculations |
|
|
120 | (3) |
|
5.3 Electronic band structure |
|
|
123 | (3) |
|
5.4 Electronic and optical properties |
|
|
126 | (5) |
|
5.5 Nonlinear optical properties |
|
|
131 | (6) |
|
5.6 Fabrication: single crystal growth and exfoliation; CVD, growth of 2D nanostructures |
|
|
137 | (3) |
|
|
140 | (1) |
|
|
140 | (10) |
|
|
150 | (3) |
|
6 Epitaxial II-Vi Semiconductor Quantum Structures Involving Dilute Magnetic Semiconductors |
|
|
153 | (36) |
|
|
|
|
|
153 | (2) |
|
6.2 Magneto-optical properties of ZnSe and ZnTe epilayers |
|
|
155 | (3) |
|
6.2.1 Band structure and exciton |
|
|
155 | (2) |
|
6.2.2 Exciton transitions in the absence of magnetic field |
|
|
157 | (1) |
|
6.3 Landau level transitions and magneto-polaron effect |
|
|
158 | (3) |
|
6.4 Composition modulated ZnSeTe sinusoidal superlattice |
|
|
161 | (5) |
|
6.4.1 Band structure of superlattice with sinusoidal energy profile |
|
|
162 | (1) |
|
6.4.2 Growth of ZnSeTe superlattices with sinusoidal composition modulation |
|
|
163 | (2) |
|
6.4.3 Optical transitions in ZnSeTe sinusoidal superlattices |
|
|
165 | (1) |
|
6.5 II-Vl-based zero-dimensional structures |
|
|
166 | (7) |
|
6.5.1 Spin polarization and relaxation of exciton in QDs |
|
|
167 | (4) |
|
6.5.2 Spin-spin interaction between the coupled QDs |
|
|
171 | (2) |
|
6.6 II-VI quantum structures involving DMSs |
|
|
173 | (5) |
|
6.6.1 Zeeman splitting in II1-xMnxVI DMS epilayers |
|
|
173 | (1) |
|
6.6.2 Mapping of exciton localization in QDs |
|
|
174 | (4) |
|
6.7 Enhancement of spin polarization in non-DMS and DMS coupled QDs |
|
|
178 | (3) |
|
|
181 | (1) |
|
|
182 | (7) |
|
7 2D Electron Gas In Chalcogenide Multilayers |
|
|
189 | (46) |
|
|
|
|
189 | (1) |
|
7.2 2DEG in magnetically doped QWs |
|
|
190 | (21) |
|
7.2.1 2DEG in low-dimensional heterostructures |
|
|
190 | (3) |
|
7.2.2 Spin interactions in chalcogenide DMS QWs |
|
|
193 | (2) |
|
7.2.3 Magnetotransport in chalcogenide QWs |
|
|
195 | (11) |
|
7.2.4 DMS QW in inhomogeneous magnetic fields |
|
|
206 | (3) |
|
7.2.5 DMS QWs under terahertz and microwave radiation |
|
|
209 | (2) |
|
7.3 Novel topological phases in chalcogenide multilayers |
|
|
211 | (9) |
|
7.3.1 Domain walls and non-Abelian excitations |
|
|
212 | (5) |
|
7.3.2 Wireless Majorana bound states |
|
|
217 | (1) |
|
7.3.3 Quantum spin Hall effect in HgTe QWs |
|
|
217 | (2) |
|
7.3.4 Quantum anomalous Hall effect in HgTe QWs |
|
|
219 | (1) |
|
7.3.5 Topological phases in IV-VI materials |
|
|
220 | (1) |
|
7.4 Summary and perspectives |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
221 | (14) |
|
8 Layered Two-Dimensional Selenides And Tellurides Grown By Molecular Beam Epitaxy |
|
|
235 | (36) |
|
|
|
|
|
|
|
|
|
235 | (2) |
|
|
235 | (2) |
|
8.1.2 A survey of 2D chalcogenides |
|
|
237 | (1) |
|
8.2 MBE growth of 2D materials |
|
|
237 | (16) |
|
8.2.1 Advantages of MBE growth of 2D materials |
|
|
237 | (5) |
|
8.2.2 Growth of layered selenide and telluride films and their heterostructures |
|
|
242 | (7) |
|
8.2.3 Cross between 2D and 3D structures |
|
|
249 | (3) |
|
|
252 | (1) |
|
8.3 Physical characterization of 2D materials grown by MBE |
|
|
253 | (8) |
|
8.3.1 Electronic structure of 2D materials |
|
|
253 | (2) |
|
8.3.2 Phonon properties of 2D materials |
|
|
255 | (2) |
|
8.3.3 Other optical properties of 2d materials |
|
|
257 | (4) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
262 | (9) |
|
9 Tailoring Exchange Interactions In Magnetically Doped II-VI Nanocrystals |
|
|
271 | (34) |
|
|
|
|
|
271 | (4) |
|
9.1.1 Theoretical background |
|
|
272 | (3) |
|
9.1.2 Outline of the chapter |
|
|
275 | (1) |
|
9.2 Two-dimensional (2D) colloidal nanocrystals |
|
|
275 | (7) |
|
9.2.1 Giant magneto-optical response in Mn2+-doped CdSe nanoribbons |
|
|
275 | (4) |
|
9.2.2 Tuning magnetic exchange interactions by wavefunction engineering in core/shell nanoplatelets |
|
|
279 | (3) |
|
9.3 Zero-dimensional nanocrystals |
|
|
282 | (7) |
|
9.3.1 Valence-band mixing in doped nanocrystal quantum dots |
|
|
282 | (3) |
|
9.3.2 Going to the limit: individual dopants in single nanocrystals quantum dots |
|
|
285 | (4) |
|
9.4 At the border between quantum dots and molecules: magic sized nanoclusters |
|
|
289 | (5) |
|
9.4.1 Smallest doped semiconductors |
|
|
289 | (1) |
|
9.4.2 Doped magic-sized alloy nanoclusters |
|
|
290 | (2) |
|
9.4.3 "Digital" doping in nanoclusters |
|
|
292 | (2) |
|
9.5 Conclusion and future trends |
|
|
294 | (1) |
|
|
295 | (1) |
|
|
296 | (9) |
|
10 Chalcogenide Topological Insulators |
|
|
305 | (34) |
|
|
|
305 | (7) |
|
10.1.1 The Z2 Topological insulator |
|
|
306 | (1) |
|
10.1.2 Mercury telluride quantum wells |
|
|
307 | (2) |
|
10.1.3 V2VI3-series 3D topological insulators |
|
|
309 | (3) |
|
|
312 | (6) |
|
10.2.1 Mercury telluride quantum well growth |
|
|
312 | (2) |
|
10.2.2 V2VI3-series 3D topological insulators |
|
|
314 | (4) |
|
10.3 Experimental investigations |
|
|
318 | (9) |
|
|
318 | (3) |
|
10.3.2 Electrical transport |
|
|
321 | (2) |
|
10.3.3 Exotic topological states |
|
|
323 | (4) |
|
|
327 | (2) |
|
|
329 | (7) |
|
|
336 | (3) |
|
11 Thermal Transport Of Chalcogenides |
|
|
339 | (32) |
|
|
|
|
|
|
339 | (4) |
|
11.1.1 Basic theory of heat conduction |
|
|
339 | (3) |
|
11.1.2 The structure characteristics of chalcogenides |
|
|
342 | (1) |
|
|
343 | (9) |
|
11.2.1 Dimensional effect |
|
|
343 | (3) |
|
|
346 | (2) |
|
11.2.3 Single-layer sheet |
|
|
348 | (3) |
|
11.2.4 Discussion on the overall trend from single-layer to bulk |
|
|
351 | (1) |
|
11.3 Extrinsic thermal conductivity of chalcogenide |
|
|
352 | (8) |
|
|
352 | (3) |
|
11.3.2 Effect of atomic disorder and defect |
|
|
355 | (3) |
|
|
358 | (2) |
|
11.4 Fundamental insight into thermal transport |
|
|
360 | (4) |
|
|
360 | (1) |
|
11.4.2 Lone pair electron |
|
|
361 | (2) |
|
|
363 | (1) |
|
11.5 Conclusion and outlook |
|
|
364 | (1) |
|
|
364 | (7) |
Index |
|
371 | |