Muutke küpsiste eelistusi

E-raamat: Charge Pump IC Design

  • Formaat: 256 pages
  • Ilmumisaeg: 27-Jul-2015
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071836814
  • Formaat - EPUB+DRM
  • Hind: 159,12 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 256 pages
  • Ilmumisaeg: 27-Jul-2015
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071836814

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality,  authenticity, or access to any online entitlements included with the product.

Design state-of-the-art charge pumpsCharge Pump IC Design delivers an advanced systematic approach to charge pump circuit designfrom building blocks to final pump. The book describes how to achieve high power efficiency and low supply noise. Negative feedback control, compensation, and stability are discussed and real-world design examples with schematics are included. The proven techniques presented in this practical, cutting-edge guide will help you to provide the efficient power conversion needed for todays portable electronic devices.

Comprehensive coverage includes:









Regulators and power converters Charge pump design specifications and design metrics Single stage charge pump Multi-stage charge pump Charge pump clock driver Charge pump stability analysis Charge pump design, regulation, and control by examples Charge pump applications
Preface ix
Acknowledgments x
1 Regulators and Power Converters
1(38)
1.1 Linear Regulator
1(10)
1.1.1 Input Power Supply Noise Rejection
2(1)
1.1.2 Load Noise Rejection
3(1)
1.1.3 Topologies of Linear Regulators
4(3)
1.1.4 High Dropout Regulator
7(2)
1.1.5 Low Dropout Regulator
9(2)
1.2 Switch Mode Power Supply
11(18)
1.2.1 Buck Converter
11(6)
1.2.2 Boost Converter
17(6)
1.2.3 Split-π Converter (Boost--Buck Converter)
23(1)
1.2.4 Inverting Converter
23(6)
1.3 Charge Pump
29(8)
1.3.1 Positive Charge Pump (Step-Up Converter)
29(3)
1.3.2 Negative Charge Pump (Inverting Converter)
32(3)
1.3.3 Charge Pump LDO (Step-Down Converter)
35(2)
1.4 References
37(2)
2 Charge Pump Design Specifications and Design Metrics
39(16)
2.1 Charge Pump Design Specifications
39(9)
2.1.1 Technology
39(3)
2.1.2 Loadings
42(1)
2.1.3 Input Supply Voltage Range
43(1)
2.1.4 Input Supply Current Capability
44(1)
2.1.5 Output Supply Voltage Range
44(2)
2.1.6 Output Supply Current Capability
46(1)
2.1.7 Output Supply Noise
47(1)
2.2 Charge Pump Design Metrics
48(5)
2.2.1 IV Characteristics
48(1)
2.2.2 Charge Pump Power Efficiency
49(3)
2.2.4 Line Regulation
52(1)
2.2.5 Load Regulation
53(1)
2.3 References
53(2)
3 Single-Stage Charge Pump
55(54)
3.1 Basic Modeling of Charge Pump
55(15)
3.1.1 IV Curve Analysis
56(3)
3.1.2 Capacitive Coupling, Charge Transfer, and Diode Isolation
59(6)
3.1.3 Charge Pump Design with VT Cancellation
65(1)
3.1.4 IV Curve of VT Cancellation Scheme
66(1)
3.1.5 Charge Transfer
67(2)
3.1.6 P-Channel versus N-Channel Isolation Device
69(1)
3.2 Basic Cross-Coupled Pair Voltage Doubler
70(15)
3.2.1 Introduction
70(1)
3.2.2 Nonoverlapping Clock Phases
71(1)
3.2.3 Precharge Phase versus Coupling Phase
72(4)
3.2.4 Diode Isolation
76(1)
3.2.5 Advantages
76(3)
3.2.6 Architecture Limitations
79(6)
3.3 Cross-Coupled Pair Voltage Doubler: Parallel Stage VT Cancellation on Output Stages
85(13)
3.3.1 Advantages
86(9)
3.3.2 Architecture Limitations
95(3)
3.4 Cross-Coupled Pair Voltage Doubler: Parallel Stage VT Cancellation on Input Stage
98(4)
3.4.1 Advantages
99(3)
3.4.2 Architecture Limitations
102(1)
3.5 Cross-Coupled Pair Voltage Doubler: Parallel Stage VT Cancellation Optimum Design
102(4)
3.5.1 Advantages
103(3)
3.6 Architecture Summary
106(1)
3.7 References
107(2)
4 Multistage Charge Pump
109(18)
4.1 Positive Charge Pump with Diode Isolation
109(5)
4.1.1 Design Concept
109(1)
4.1.2 Nonidealities
109(3)
4.1.3 IV Curve Analysis
112(1)
4.1.4 Conclusion
113(1)
4.2 Negative Charge Pump with Diode Isolation
114(4)
4.2.1 Design Concept
114(1)
4.2.2 Nonidealities
115(2)
4.2.3 IV Curve Analysis
117(1)
4.2.4 Conclusion
118(1)
4.3 Parallel Stage VT Cancellation
118(4)
4.3.1 Design Concept
118(1)
4.3.2 Nonidealities
119(2)
4.3.3 IV Curve Analysis
121(1)
4.3.4 Conclusion
122(1)
4.4 Self-adaptive Charge Pump
122(2)
4.4.1 Design Concept
122(2)
4.5 Four-Phase Charge Pump
124(2)
4.5.1 Design Concept
124(1)
4.5.2 Four-Phase Charge Pump without Clock Phase Overlap
125(1)
4.6 References
126(1)
5 Charge Pump Clock Driver
127(20)
5.1 Pump Clock Driver Design
127(6)
5.1.1 Supply of Pump Clock Driver
127(2)
5.1.2 Delay of Internal Buffering Stage
129(1)
5.1.3 Final Stage of Clock Buffer and Buffering Technique
130(3)
5.2 Feedback Control
133(7)
5.2.1 LDO
134(1)
5.2.2 HDO
135(1)
5.2.3 Switch Regulator
136(2)
5.2.4 Open-Loop Control
138(2)
5.3 Pump Clock Driver with Stacking Capacitors
140(6)
5.3.1 Charging Technique
140(6)
5.4 References
146(1)
6 Charge Pump Stability Analysis
147(22)
6.1 Negative Feedback
147(1)
6.2 Stability
148(9)
6.2.1 DC or Low-Frequency Response
149(1)
6.2.2 High-Frequency Response
149(1)
6.2.3 First-Order Negative Feedback System
150(1)
6.2.4 Second-Order Negative Feedback System
151(2)
6.2.5 Higher-Order Negative Feedback System
153(1)
6.2.6 Compensation
154(3)
6.3 Stability and Compensation for Charge Pump
157(10)
6.3.1 Charge Pump with On/Off Regulation
158(2)
6.3.2 Charge Pump with Dynamic Voltage Scaling
160(7)
6.4 References
167(2)
7 Charge Pump Design, Regulation, and Control by Examples
169(40)
7.1 Resistive Divider Feedback Control
169(4)
7.1.1 Accuracy
169(2)
7.1.2 Power
171(2)
7.2 Capacitive Divider Feedback Control
173(3)
7.2.1 Accuracy
175(1)
7.2.2 Power
175(1)
7.2.3 Charge Conservation
175(1)
7.3 Capacitive Divider Feedback without Refreshing Interruption
176(3)
7.4 Floating Regulation
179(3)
7.4.1 Accuracy
179(1)
7.4.2 Power Efficiency
180(2)
7.5 Hybrid Regulation
182(4)
7.5.1 Initialization Phase
182(2)
7.5.2 Regulation Phase
184(1)
7.5.3 Accuracy
185(1)
7.5.4 Power
185(1)
7.6 Alternative Hybrid Regulation
186(3)
7.6.1 Initialization Phase
187(1)
7.6.2 Regulation Phase
188(1)
7.6.3 Advantages
189(1)
7.7 Dynamic Frequency Scaling
189(3)
7.7.1 Dynamic Frequency Scaling with Predefined Operations
189(1)
7.7.2 Dynamic Frequency Scaling with Feedback Control
190(2)
7.8 Dynamic Voltage Scaling
192(4)
7.8.1 Continuous Pump Clock Amplitude Scaling
194(1)
7.8.2 Quantized Pump Clock Amplitude Scaling
195(1)
7.9 High-Efficiency Charge Pump Regulator
196(5)
7.9.1 Initialization Phase
198(1)
7.9.2 Regulation Phase
199(2)
7.10 RC-Based VT Cancellation
201(4)
7.10.1 Low-Pass Function
201(1)
7.10.2 High-Pass Function
202(1)
7.10.3 Combined Effects
202(3)
7.11 Charge Pump Clock Equalization
205(3)
7.12 References
208(1)
8 Charge Pump Applications
209(26)
8.1 Oversampling Charge Pump ADC
210(7)
8.1.1 DC Comparison
213(1)
8.1.2 Ramp ADC
214(1)
8.1.3 Oversampling Charge Pump ADC
215(2)
8.2 Sigma-Delta Oversampling Charge Pump ADC
217(4)
8.3 Dynamic Output Noise Optimization Using Charge Pump-Based Current ADC
221(6)
8.4 Dynamic Power Efficiency Optimization Using Charge Pump ADC
227(4)
8.5 Dynamic IR Drop Compensation with Variable Current Load
231(2)
8.6 References
233(2)
Index 235
McGraw-Hill authors represent the leading experts in their fields and are dedicated to improving the lives, careers, and interests of readers worldwide