Muutke küpsiste eelistusi

E-raamat: Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications

(Slovak University of Technology in Bratislava)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Dec-2018
  • Kirjastus: Wiley-AIChE
  • Keel: eng
  • ISBN-13: 9781119311447
  • Formaat - PDF+DRM
  • Hind: 140,73 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Dec-2018
  • Kirjastus: Wiley-AIChE
  • Keel: eng
  • ISBN-13: 9781119311447

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A comprehensive and example oriented text for the study of chemical process design and simulation

Chemical Process Design and Simulation is an accessible guide that offers information on the most important principles of chemical engineering design and includes illustrative examples of their application that uses simulation software. A comprehensive and practical resource, the text uses both Aspen Plus and Aspen Hysys simulation software.

The author describes the basic methodologies for computer aided design and offers a description of the basic steps of process simulation in Aspen Plus and Aspen Hysys. The text reviews the design and simulation of individual simple unit operations that includes a mathematical model of each unit operation such as reactors, separators, and heat exchangers. The author also explores the design of new plants and simulation of existing plants where conventional chemicals and material mixtures with measurable compositions are used. In addition, to aid in comprehension, solutions to examples of real problems are included. The final section covers plant design and simulation of processes using nonconventional components. This important resource:

  • Includes information on the application of both the Aspen Plus and Aspen Hysys software that enables a comparison of the two software systems
  • Combines the basic theoretical principles of chemical process and design with real-world examples
  • Covers both processes with conventional organic chemicals and processes with more complex materials such as solids, oil blends, polymers and electrolytes
  • Presents examples that are solved using a new version of Aspen software, ASPEN One 9

Written for students and academics in the field of process design, Chemical Process Design and Simulation is a practical and accessible guide to the chemical process design and simulation using proven software. 

List of Tables
xiii
List of Figures
xvii
About the author xxv
Preface xxvii
Acknowledgments xxix
Abbreviations xxxi
Symbols xxxiii
About the Companion Website xliii
Part I Introduction to Design and Simulation
1(60)
1 Introduction to Computer-Aided Process Design and Simulation
3(12)
1.1 Process Design
3(1)
1.2 Process Chemistry Concept
4(1)
1.3 Technology Concept
5(1)
1.4 Data Collection
6(1)
1.4.1 Material Properties Data
6(1)
1.4.2 Phase Equilibrium Data
6(1)
1.4.3 Reaction Equilibrium and Reaction Kinetic Data
6(1)
1.5 Simulation of an Existing Process
6(1)
1.6 Development of Process Flow Diagrams
7(1)
1.7 Process Simulation Programs
7(4)
1.7.1 Sequential Modular versus Equation-Oriented Approach
9(1)
1.7.2 Starting a Simulation with Aspen Plus
10(1)
1.7.3 Starting a Simulation with Aspen HYSYS
11(1)
1.8 Conventional versus Nonconventional Components
11(3)
1.9 Process Integration and Energy Analysis
14(1)
1.10 Process Economic Evaluation
14(1)
References
14(1)
2 General Procedure for Process Simulation
15(46)
2.1 Component Selection
15(10)
2.2 Property Methods and Phase Equilibrium
25(23)
2.2.1 Physical Property Data Sources
25(2)
2.2.2 Phase Equilibrium Models
27(4)
2.2.3 Selection of a Property Method in Aspen Plus
31(4)
2.2.4 Selection of a Property Package in Aspen HYSYS
35(1)
2.2.5 Pure Component Property Analysis
36(2)
2.2.6 Binary Analysis
38(6)
2.2.7 Azeotrope Search and Analysis of Ternary Systems
44(3)
2.2.8 PT Envelope Analysis
47(1)
2.3 Chemistry and Reactions
48(5)
2.4 Process Flow Diagrams
53(5)
References
58(3)
Part II Design and Simulation of Single Unit Operations
61(112)
3 Heat Exchangers
63(22)
3.1 Heater and Cooler Models
63(3)
3.2 Simple Heat Exchanger Models
66(3)
3.3 Simple Design and Rating of Heat Exchangers
69(3)
3.4 Detailed Design and Simulation of Heat Exchangers
72(5)
3.4.1 HYSYS Dynamic Rating
74(2)
3.4.2 Rigorous Shell and Tube Heat Exchanger Design Using EDR
76(1)
3.5 Selection and Costing of Heat Exchangers
77(5)
References
82(3)
4 Pressure Changing Equipment
85(16)
4.1 Pumps, Hydraulic Turbines, and Valves
85(3)
4.2 Compressors and Gas Turbines
88(4)
4.3 Pressure Drop Calculations in Pipes
92(5)
4.4 Selection and Costing of Pressure Changing Equipment
97(2)
References
99(2)
5 Reactors
101(24)
5.1 Material and Enthalpy Balance of a Chemical Reactor
101(1)
5.2 Stoichiometry and Yield Reactor Models
101(5)
5.3 Chemical Equilibrium Reactor Models
106(4)
5.3.1 REquil Model of Aspen Plus
108(1)
5.3.2 Equilibrium Reactor Model of Aspen HYSYS
108(1)
5.3.3 RGibbs Model of Aspen Plus and Gibbs Reactor Model of Aspen HYSYS
109(1)
5.4 Kinetic Reactor Models
110(12)
5.5 Selection and Costing of Chemical Reactors
122(2)
References
124(1)
6 Separation Equipment
125(30)
6.1 Single Contact Phase Separation
125(2)
6.2 Distillation Column
127(9)
6.2.1 Shortcut Distillation Method
128(3)
6.2.2 Rigorous Methods
131(5)
6.3 Azeotropic and Extractive Distillation
136(5)
6.4 Reactive Distillation
141(4)
6.5 Absorption and Desorption
145(3)
6.6 Extraction
148(2)
6.7 Selection and Costing of Separation Equipment
150(3)
6.7.1 Distillation Equipment
150(1)
6.7.2 Absorption Equipment
151(1)
6.7.3 Extraction Equipment
152(1)
References
153(2)
7 Solid Handling
155(18)
7.1 Dryer
155(5)
7.2 Crystallizer
160(2)
7.3 Filter
162(1)
7.4 Cyclone
163(3)
7.5 Selection and Costing of Solid Handling Equipment
166(1)
References
167(1)
Exercises - Part II
168(5)
Part III Plant Design and Simulation: Conventional Components
173(110)
8 Simple Concept Design of a New Process
175(28)
8.1 Analysis of Materials and Chemical Reactions
175(1)
8.1.1 Ethyl Acetate Process
175(1)
8.1.2 Styrene Process
176(1)
8.2 Selection of Technology
176(4)
8.2.1 Ethyl Acetate Process
176(1)
8.2.2 Styrene Process
177(3)
8.3 Data Analysis
180(8)
8.3.1 Pure Component Property Analysis
180(1)
8.3.2 Reaction Kinetic and Equilibrium Data
181(4)
8.3.3 Phase Equilibrium Data
185(3)
8.4 Starting Aspen Simulation
188(1)
8.4.1 Ethyl Acetate Process
188(1)
8.4.2 Styrene Process
188(1)
8.5 Process Flow Diagram and Preliminary Simulation
188(12)
8.5.1 Ethyl Acetate Process
188(5)
8.5.2 Styrene Process
193(7)
References
200(3)
9 Process Simulation In an Existing Plant
203(12)
9.1 Analysis of Process Scheme and Syntheses of a Simulation Scheme
203(2)
9.2 Obtaining Input Data from the Records of Process Operation and Technological Documentation
205(1)
9.3 Property Method Selection
206(1)
9.4 Simulator Flow Diagram
207(1)
9.5 Simulation Results
208(1)
9.6 Results Evaluation and Comparison with Real-Data Recorded
208(3)
9.7 Scenarios for Suggested Changes and Their Simulation
211(3)
References
214(1)
10 Material Integration
215(24)
10.1 Material Recycling Strategy
215(1)
10.2 Material Recycling in Aspen Plus
216(3)
10.3 Material Recycling in Aspen HYSYS
219(4)
10.4 Recycling Ratio Optimization
223(7)
10.5 Steam Requirement Simulation
230(2)
10.6 Cooling Water and Other Coolants Requirement Simulation
232(1)
10.7 Gas Fuel Requirement Simulation
233(4)
References
237(2)
11 Energy Integration
239(24)
11.1 Energy Recovery Simulation by Aspen Plus
239(3)
11.2 Energy Recovery Simulation in Aspen HYSYS
242(2)
11.3 Waste Stream Combustion Simulation
244(6)
11.4 Heat Pump Simulation
250(3)
11.5 Heat Exchanger Networks and Energy Analysis Tools in Aspen Software
253(8)
References
261(2)
12 Economic Evaluation
263(20)
12.1 Estimation of Capital Costs
263(3)
12.2 Estimation of Operating Costs
266(4)
12.2.1 Raw Materials
267(1)
12.2.2 Utilities
268(1)
12.2.3 Operating Labor
269(1)
12.2.4 Other Manufacturing Costs
270(1)
12.2.5 General Expenses
270(1)
12.3 Analysis of Profitability
270(4)
12.4 Economic Evaluation Tools of Aspen Software
274(4)
12.4.1 Economic Evaluation Button
274(1)
12.4.2 Economics Active
275(1)
12.4.3 Detailed Economic Evaluation by APEA
275(3)
References
278(1)
Exercises -- Part III
279(4)
Part IV Plant Design and Simulation: Nonconventional Components
283(104)
13 Design and Simulation Using Pseudocomponents
285(36)
13.1 Petroleum Assays and Blends
285(9)
13.1.1 Petroleum Assay Characterization in Aspen HYSYS
286(3)
13.1.2 Petroleum Assay Characterization in Aspen Plus
289(5)
13.2 Primary Distillation of Crude Oil
294(13)
13.3 Cracking and Hydrocracking Processes
307(12)
13.3.1 Hydrocracking of Vacuum Residue
309(6)
13.3.2 Modeling of an FCC Unit in Aspen HYSYS
315(4)
References
319(2)
14 Processes with Nonconventional Solids
321(26)
14.1 Drying of Nonconventional Solids
321(5)
14.2 Combustion of Solid Fuels
326(3)
14.3 Coal, Biomass, and Solid Waste Gasification
329(12)
14.3.1 Chemistry
329(3)
14.3.2 Technology
332(2)
14.3.3 Data
334(1)
14.3.4 Simulation
334(7)
14.4 Pyrolysis of Organic Solids and Bio-oil Upgrading
341(5)
14.4.1 Component List
341(1)
14.4.2 Property Models
342(1)
14.4.3 Process Flow Diagram
342(2)
14.4.4 Feed Stream
344(1)
14.4.5 Pyrolysis Yields
344(1)
14.4.6 Distillation Column
344(1)
14.4.7 Results
344(2)
References
346(1)
15 Processes with Electrolytes
347(20)
15.1 Acid Gas Removal by an Alkali Aqueous Solution
347(8)
15.1.1 Chemistry
347(3)
15.1.2 Property Methods
350(1)
15.1.3 Process Flow Diagram
351(2)
15.1.4 Simulation Results
353(2)
15.2 Simulation of Sour Gas Removal by Aqueous Solution of Amines
355(6)
15.3 Rate-Based Modeling of Absorbers with Electrolytes
361(4)
References
365(2)
16 Simulation of Polymer Production Processes
367(20)
16.1 Overview of Modeling Polymerization Process in Aspen Plus
367(1)
16.2 Component Characterization
368(1)
16.3 Property Method
369(1)
16.4 Reaction Kinetics
370(5)
16.5 Process Flow Diagram
375(4)
16.6 Results
379(4)
References
383(1)
Exercises -- Part IV
384(3)
Index 387
JUMA HAYDARY is a Faculty member of Chemical and Food Technology in the Department of Chemical and Biochemical Engineering at Slovak University of Technology in Bratislava.