Muutke küpsiste eelistusi

E-raamat: Chemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Methods for Prokaryotic and Eukaryotic Systems

Volume editor (University of Pennsylvania, PA, USA)
  • Formaat: EPUB+DRM
  • Sari: Methods in Enzymology
  • Ilmumisaeg: 14-May-2020
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128201480
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 188,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Methods in Enzymology
  • Ilmumisaeg: 14-May-2020
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128201480
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Chemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Methods for Prokaryotic and Eukaryotic Systems, Volume 638, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Sample chapters from this new release include In vitro characterization of the colibactin-activating peptidase ClbP enables development of a fluorogenic activity probe, Using FDAA probes to study cell division in Bacillus subtilis, Chemoenzymatic synthesis of UDP-sugars, Chemical tools for selective activity profiling of bacterial penicillin-binding proteins, Chemical Probes Reveal and Extraseptal Mode of Cross-linking in Staphylococcus Aureus, and much more.

  • Provides the authority and expertise of leading contributors from an international board of authors
  • Presents the latest release in the Methods in Enzymology series
  • Includes the latest information on retinoid signaling pathways
Contributors xi
Preface xv
1 Utility of bacterial peptidoglycan recycling enzymes in the chemoenzymatic synthesis of valuable UDP sugar substrates
1(26)
Ophelia I. Ukaegbu
Kristen E. DeMeester
Hai Liang
Ashley R. Brown
Zachary S. Jones
Catherine Leimkuhler Grimes
1 Introduction
2(4)
2 Materials and method
6(16)
3 Summary
22(1)
Acknowledgments
22(1)
References
23(4)
2 Chemical tools for selective activity profiling of bacterial penicillin-binding proteins
27(30)
Shabnam Sharifzadeh
Nathaniel W. Brown
Joshua D. Shirley
Kevin E. Bruce
Malcolm E. Winkler
Erin E. Carlson
1 Introduction
28(2)
2 Activity-based profiling of penicillin-binding proteins
30(12)
3 Gel-based analysis of PBP activity profile
42(4)
4 In vivo imaging of PBP activity
46(4)
5 Additional considerations and controls
50(1)
6 Summary
51(1)
Acknowledgments
52(1)
References
52(5)
3 Fluorescent stem peptide mimics: In situ probes for peptidoglycan crosslinking
57(12)
Samir Gautam
Taehan Kim
Rebecca Howell
David A. Spiegel
1 Introduction
58(2)
2 Probe synthesis
60(2)
3 Bacterial growth and FSPM labeling
62(1)
4 Quantification of crosslinking by flow cytometry
63(1)
5 Localization of crosslinking by microscopy
64(1)
6 Concluding remarks (
65(1)
References
66(3)
4 Gram-scale preparation of the antibiotic lead compound salicyl-AMS, a potent inhibitor of bacterial salicylate adenylation enzymes
69(20)
Nihar Kinarivala
Lisa C. Standke
Tezcan Guney
Cheng Ji
Naoyoshi Noguchi
Yasutomi Asano
Derek S. Tan
1 Introduction
70(2)
2 Synthesis of salicyl-AMS, sodium salt
72(4)
3 Protocol
76(7)
4 Concluding remarks
83(1)
Acknowledgments
84(1)
Conflicts of interests
84(1)
References
84(5)
5 Probe-enabled approaches for function-dependent cell sorting and characterization of microbiome subpopulations
89(20)
Andrea K. Steiger
Sarah J. Fansler
Christopher Whidbey
Carson J. Miller
Aaron T. Wright
1 Introduction
90(2)
2 Probe design for FACS-enabled isolation
92(4)
3 Labeling and selectivity protocols
96(3)
4 Microbiome sample preparation
99(2)
5 Fluorescence-activated cell sorting (FACS) protocols
101(3)
6 Conclusions
104(1)
Acknowledgments
104(1)
References
104(5)
6 Biochemical analysis of NlpC/p60 peptidoglycan hydrolase activity
109(20)
Byungchul Kim
Juliel Espinosa
Howard C. Hang
1 Introduction
110(1)
2 Bacterial expression and purification of recombinant NlpC/p60 proteins
111(5)
3 Large scale isolation of peptidoglycan
116(3)
4 Biochemical analysis of NlpC/p60 peptidoglycan hydrolase activity
119(6)
5 Summary and conclusions
125(1)
Acknowledgments
125(1)
Conflict of interest statement
125(1)
References
126(3)
7 Controlled release of bioactive signaling molecules
129(10)
Maulik S. Jani
Aneesh T. Veetil
Yamuna Krishnan
1 Introduction
130(1)
2 Protocol
131(6)
3 Summary
137(1)
Acknowledgments
138(1)
References
138(1)
8 Imaging nascent transcription in wholemount vertebrate embryos to characterize zygotic genome activation
139(28)
Hui Chen
Matthew C. Good
1 Introduction
140(2)
2 Protocol
142(18)
3 Summary
160(1)
4 Notes
161(2)
Acknowledgments
163(1)
References
163(4)
9 Engineering reversible cell-cell interactions with chemical biology
167(24)
Clifford M. Csizmar
Carston R. Wagner
1 Introduction
168(1)
2 Nongenetic approaches to engineering cell-cell interactions
169(7)
3 Engineering reversible cell-cell interactions with chemically self-assembled nanorings (CSANS)
176(2)
4 Protocols
178(6)
5 Analysis of the cell-cell interactions
184(3)
6 Summary
187(1)
Acknowledgments
187(1)
References
188(3)
10 Fast phosphine-activated control of protein function using unnatural lysine analogues
191(28)
Joshua S. Wesalo
Alexander Deiters
1 Introduction
192(4)
2 Methods
196(15)
3 Controlling protein SUMOylation with phosphine triggers
211(3)
4 Summary
214(1)
Acknowledgments
214(1)
References
214(5)
11 Photopharmacological control of lipid function
219(14)
Johannes Morstein
Dirk Trauner
1 Introduction
219(1)
2 General consideration when working with azobenzene-photoswitches
220(5)
3 Photopharmacological assay methods--Exemplified with PhotoSIP
225(6)
Acknowledgments
231(1)
References
231(2)
12 Expanding the substrate selectivity of SNAP/CLIP-tagging of intracellular targets
233(26)
Miguel Macias-Contreras
Kevin N. Little
Lei Zhu
1 Introduction
234(2)
2 Genetic construction
236(1)
3 SNAP-tag labeling of an (O6-(5-pyridy I methyl) guanine substrate
237(7)
4 Two-step bioorthogonal labeling
244(9)
5 Conclusion
253(1)
Acknowledgments
254(1)
References
254(5)
13 Light-induced protein proximity by activation of gibberellic acid derivatives in living cells
259(14)
Michael J. Ziegler
Richard Wombacher
1 Introduction
260(5)
2 Methods
265(5)
3 Summary
270(1)
Acknowledgments
270(1)
References
270(3)
14 Photoactivatable trimethoprim-based probes for spatiotemporal control of biological processes
273(22)
Daniel Z. Wu
Michael A. Lampson
David M. Chenoweth
1 Introduction
274(4)
2 Preparation and synthesis
278(7)
3 Methods
285(3)
4 Analysis
288(4)
5 Notes
292(1)
6 Summary and Conclusions
292(1)
Acknowledgments
293(1)
References
293(2)
15 Site-specific antibody fragment conjugates for targeted imaging
295(26)
Robert Maloney
Zakey Yusuf Buuh
Yue Zhao
Rongsheng E. Wang
1 Introduction
296(3)
2 Genetic incorporation of UAA to fab fragments
299(5)
3 Linker compound synthesis
304(3)
4 Site-specific fab conjugation and purification
307(2)
5 In vitro characterization of the fab conjugates
309(5)
6 In vivo imaging using fab conjugates
314(4)
7 Summary and conclusions
318(3)
Acknowledgments
318(1)
References
318(3)
16 Quantifying protein-protein interactions of the acyl carrier protein with solvatochromic probes
321
Katherine Charov
Michael D. Burkart
1 Introduction
322(2)
2 Preparation of 4-DMN-EcACP
324(12)
3 Protein-protein interaction studies using 4-DMN-EcACP
336(3)
4 Summary and conclusions
339
Acknowledgments
340(1)
References
340
David Chenoweth is at University of Pennsylvania, PA, USA