Muutke küpsiste eelistusi

E-raamat: Chemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Chemical, Optical and Bioorthogonal Methods

Volume editor (University of Pennsylvania, PA, USA)
  • Formaat: EPUB+DRM
  • Sari: Methods in Enzymology
  • Ilmumisaeg: 24-Jul-2020
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128211557
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 188,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Methods in Enzymology
  • Ilmumisaeg: 24-Jul-2020
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128211557
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Chemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Chemical, Optical and Bioorthogonal Methods, Volume 641 in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Chapters in this new release include caged cyclopropanes with improved tetrazine ligation kinetics, an analysis of metabolically labeled inositol phosphate messengers by NMR, cell-permeant caged inositol pyrophosphates for probing -cells, imaging phospholipase D activity with clickable alcohols via transphosphatidylation, fluorescent biorthogonal labeling of class B GPCRs in live cells, near-infrared photoactivatable nitric oxide donors with integrated photoacoustic monitoring, and much more.
Contributors xiii
Preface xix
1 Enzyme- or light-triggered cyclopropenes for bioorthogonal ligation
1(34)
Ting Jiang
Scott T. Laughlin
1 Bioorthogonal chemistry
2(1)
2 Modern bioorthogonal reactions and their limitations
3(9)
3 An activatable cyclopropene for bioorthogonal tetrazine ligations
12(16)
4 Conclusions
28(1)
References
29(6)
2 Analysis of metabolically labeled inositol phosphate messengers by NMR
35(18)
Robert Puschmann
Robert K. Harmel
Dorothea Fiedler
1 Introduction
36(3)
2 Chemoenzymatic synthesis of [ 3CfJmyo-inositol
39(5)
3 Metabolic labeling
44(6)
4 Conclusion
50(1)
Acknowledgments
50(1)
References
50(3)
3 Photo-releasable derivatives of inositol pyrophosphates
53(22)
Sebastian Hauke
Tamara Bittner
Henning J. Jessen
Carsten Schultz
1 Introduction
54(8)
2 Methods
62(5)
3 Limitations
67(1)
4 Perspectives
68(1)
Acknowledgments
69(1)
References
69(6)
4 IMPACT: Imaging phospholipase D activity with clickable alcohols via transphosphatidylation
75(20)
Timothy W. Bumpus
Dongjun Liang
Jeremy M. Baskin
1 Introduction
76(3)
2 IMPACT for bulk and single-cell measurement of PLD activity
79(4)
3 Real-time (RT)-IMPACT for visualization of subcellular localization of PLD activity
83(6)
4 Guidance for selecting which variant of IMPACT to use
89(3)
Acknowledgments
92(1)
References
93(2)
5 Fluorescent bioorthogonal labeling of class B GPCRs in live cells
95(18)
Srikanth Kumar Gangam
Qing Lin
1 Introduction to fluorescent labeling of GPCR
96(1)
2 Site-specific incorporation of alkene reporters into the class B GPCR
97(5)
3 Bioorthogonal labeling of GCGR in live cells using tetrazine ligation
102(3)
4 Bioorthogonal labeling of GCGR in live cells using photo-click chemistry
105(2)
5 Precursor techniques
107(1)
6 Discussions and critical parameters
107(1)
7 Summary and future directions
108(1)
Acknowledgment
109(1)
References
109(4)
6 Near-infrared photoactivatable nitric oxide donors with photoacoustic readout
113(36)
Effie Y. Zhou
Hailey J. Knox
Christopher J. Reinhardt
Gina Partipilo
Jefferson Chan
1 Introduction
114(1)
2 Selection of photoactivatable nitric oxide releasing molecules
115(2)
3 Design of photoNOD-1
117(1)
4 Synthesis of photoNOD-1
118(5)
5 In vitro characterization of photoNOD-1 and rNOD-1
123(17)
6 Characterization of photoNOD-1 in vivo
140(6)
7 Concluding remarks
146(1)
References
146(3)
7 H2S donors with optical responses
149(16)
Michael D. Pluth
Yu Zhao
Matthew M. Cerda
1 Introduction
150(1)
2 Preparation and properties of fluorescent H2S donors
151(7)
3 Probe usage and application in cell models
158(3)
4 Concluding remarks
161(1)
Acknowledgments
162(1)
References
162(3)
8 Visualization of oxidative stress-induced carbonylation in live mammalian cells
165(18)
Kamalika Mukherjee
Tak Ian Chio
Susan L. Bane
1 Introduction
166(4)
2 Equipment
170(1)
3 Reagents
170(1)
4 Protocol
171(5)
5 Representative illustrations
176(2)
6 Preserving TFCH-labeled cells
178(1)
7 Summary
178(1)
Acknowledgments
179(1)
References
179(4)
9 Receptor-based fluorescent sensors constructed from ribonucleopeptide
183(42)
Skun Nakano
Hiroaki Konishi
Takashi Morii
1 Introduction
184(2)
2 Construction of receptor-based fluorescent sensors by using a ribonucleopeptide (RNP) complex
186(7)
3 Experimental model
193(26)
4 Summary
219(1)
References
220(5)
10 Conformationally restrained pentamethine cyanines and use in reductive single molecule localization microscopy
225(20)
Siddharth S. Matikonda
Ralph Gotz
Ryan McLaughlin
Markus Sauer
Martin J. Schnermann
1 Introduction
226(1)
2 Synthetic considerations
227(2)
3 Cyanine reactivity in SMLM
229(2)
4 Properties and applications of constrained pentamethine cyanines
231(1)
5 Materials
232(2)
6 Protocol for synthesis
234(5)
7 SMLM microscopy--Sample preparation
239(2)
8 Summary
241(1)
9 Notes
241(1)
References
242(3)
11 A near-infrared light-mediated cleavable linker strategy using the heptamethine cyanine chromophore
245(32)
Michael P. Luciano
Saghar Nourian
Alexander P. Gorka
Roger R. Nani
Tadanobu Nagaya
Hisataka Kobayashi
Martin J. Schnermann
1 Introduction--Long wavelength photocages
246(2)
2 Cyanine-based photocages
248(2)
3 Application of cyanines photocages to antibody-targeted drug delivery
250(1)
4 Materials
251(2)
5 Synthesis protocol
253(10)
6 In vitro uncaging and in vivo drug delivery
263(6)
7 Conclusion
269(1)
8 Notes
269(2)
Acknowledgments
271(1)
References
271(6)
12 Quantitative measurement of cytosolic penetration using the chloroalkane penetration assay
277(34)
Kirsten Deprey
Joshua A. Kritzer
1 Introduction
278(3)
2 Chloroalkane penetration assay (CAPA)
281(2)
3 Materials required
283(8)
4 Protocol
291(4)
5 Data analysis
295(3)
6 Troubleshooting
298(1)
7 Applications and limitations
299(6)
References
305(6)
13 Cell-penetrating and mitochondrion-targeting molecules
311(18)
George Appiah Kubi
Dehua Pei
1 Introduction
312(1)
2 Synthesis of CPM-cargo conjugates
313(3)
3 Mitochondrion-specific cargo delivery by CPMs
316(5)
4 Protocol
321(6)
5 Summary
327(1)
Acknowledgment
327(1)
References
327(2)
14 A photocaged DNA nanocapsule for delivery and manipulation in cells
329(14)
Yihong Feng
Takeshi Tohgasaki
Yasuyuki Shitomi
Hiroshi Sugiyama
Masayuki Endo
1 Introduction
330(1)
2 Incorporation and manipulation of caged-NCs in cells
331(5)
3 Materials
336(1)
4 Methods
337(4)
5 Notes
341(1)
Acknowledgments
341(1)
References
342(1)
15 A multicolor riboswitch-based platform for imaging of RNA in live mammalian cells
343(30)
Esther Braselmann
Amy E. Palmer
1 Introduction
344(2)
2 Overview of the Riboglow RNA tagging platform
346(4)
3 Comparison of Riboglow with related techniques
350(1)
4 Considerations for tagging RNA with Riboglow
351(4)
5 Materials, equipment and reagents
355(5)
6 Step by step protocol 1: mRNA localization to stress granules in U-2 OS cells
360(3)
7 Step by step protocol 2: U1 snRNA localization to U-bodies in HeLa cells
363(3)
8 Precursor technique: Bead loading
366(3)
9 Troubleshooting and Optimization
369(1)
10 Summary
369(1)
Acknowledgment
370(1)
References
370(3)
16 Enzymatic covalent labeling of RNA with RNA transglycosylation at guanosine (RNA-TAG)
373(28)
Kayla N. Busby
Neal K. Devaraj
1 Introduction
374(10)
2 Method
384(11)
3 Summary
395(1)
Acknowledgment
396(1)
References
396(5)
17 Assaying RNA solvent accessibility in living cells with LASER
401(12)
Chao Feng
Robert C. Spitale
1 Introduction
401(3)
2 Materials
404(1)
3 Methods
405(4)
4 Notes
409(1)
Acknowledgments
410(1)
References
410(3)
18 Split T7 RNA polymerase biosensors to study multiprotein interaction dynamics
413(20)
Jeffrey A. Dewey
Bryan C. Dickinson
1 Introduction
414(2)
2 Evolution of the split T7 RNA polymerase biosensor
416(4)
3 RNAP analysis of Bcl-2 family PPIs
420(9)
4 Summary
429(1)
Acknowledgments
430(1)
References
430(3)
19 Cross-linking cellular nucleic acids via a target-directing double click reagent
433(26)
Masayuki Tera
Nathan W. Luedtke
1 Introduction
434(4)
2 Materials and measurement instruments
438(1)
3 Methods for chemical synthesis
439(2)
4 Methods for biological experiments
441(13)
5 Discussion and conclusion
454(1)
Acknowledgments
455(1)
References
455(4)
20 Click chemistry-based amplification and detection of endogenous RNA and DNA molecules in situ using clamp FISH probes
459(18)
Sepideh Tavakoli
Yifang Liu
Jacob L. Potts
Sara H. Rouhanifard
1 Introduction
460(3)
2 Design and synthesis of oligonucleotide probe sets
463(1)
3 Preparation of samples for clampFISH
464(2)
4 ClampFISH hybridization procedure for imaging
466(5)
5 ClampFISH hybridization procedure for tissue sections
471(1)
6 Imaging and analysis
472(1)
7 ClampFISH hybridization procedure for flow cytometry or sorting
472(2)
Acknowledgments
474(1)
References
474(3)
21 Quantification of protein delivery in live cells using fluorescence correlation spectroscopy
477
Susan L. Knox
Angela Steinauer
Garrett Alpha-Cobb
Adam Trexler
Elizabeth Rhoades
Alanna Schepartz
1 Introduction
479(4)
2 Equipment and materials
483(4)
3 Methods
487(7)
4 Analysis
494(1)
5 Theory/calculation
494(5)
6 Summary and conclusions
499(1)
Acknowledgments
500(1)
Funding
500(1)
References
500
David Chenoweth is at University of Pennsylvania, PA, USA