Muutke küpsiste eelistusi

E-raamat: Chipless Radio Frequency Identification Reader Signal Processing

  • Formaat - EPUB+DRM
  • Hind: 133,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Presents a comprehensive overview and analysis of the recent developments in signal processing for Chipless Radio Frequency Identification Systems

This book presents the recent research results on Radio Frequency Identification (RFID) and provides smart signal processing methods for detection, signal integrity, multiple-access and localization, tracking, and collision avoidance in Chipless RFID systems. The book is divided into two sections: The first section discusses techniques for detection and denoising in Chipless RFID systems. These techniques include signal space representation, detection of frequency signatures using UWB impulse radio interrogation, time domain analysis, singularity expansion method for data extraction, and noise reduction and filtering techniques. The second section covers collision and error correction protocols, multi-tag identification through time-frequency analysis, FMCW radar based collision detection and multi-access for Chipless RFID tags as we as localization and tag tracking.





Describes the use of UWB impulse radio interrogation to remotely estimate the frequency signature of Chipless RFID tags using the backscatter principle Reviews the collision problem in both chipped and Chipless RFID systems and summarizes the prevailing anti-collision algorithms to address the problem Proposes state-of-the-art multi-access and signal integrity protocols to improve the efficacy of the system in multiple tag reading scenarios Features an industry approach to the integration of various systems of the Chipless RFID reader-integration of physical layers, middleware, and enterprise software

Chipless Radio Frequency Identification Reader Signal Processing is primarily written for researchers in the field of RF sensors but can serve as supplementary reading for graduate students and professors in electrical engineering and wireless communications.
Preface xi
1 Introduction 1(14)
1.1 Chipless RFID
1(6)
1.2 Chipless RFID Tag Reader
7(5)
1.3 Conclusion
12(1)
References
13(2)
2 Signal Space Representation Of Chipless RFID Signatures 15(24)
2.1 Wireless Communication Systems and Chipless RFID Systems
15(3)
2.1.1 The Conventional Digital Wireless Communication System
15(1)
2.1.2 Chipped RFID System
16(1)
2.1.3 Chipless RFID System
17(1)
2.2 The Geometric Representation of Signals in a Signal Space
18(4)
2.2.1 Representing Transmit Signals Using Orthonormal Basis Functions
18(2)
2.2.2 Receiving Signals and Decoding Information
20(2)
2.3 Novel Model for the Representation of Chipless RFID Signatures
22(10)
2.3.1 Signal Space Representation of Frequency Signatures
24(3)
2.3.2 Application of New Model
27(5)
2.4 Performance Analysis
32(2)
2.5 Experimental Results Using the Complete Tag
34(2)
2.6 Conclusion
36(2)
References
38(1)
3 Time-Domain Analysis Of Frequency Signature-Based Chipless RFID 39(32)
3.1 Limitations of Current Continuous-Wave Swept Frequency Interrogation and Reading Methods for Chipless RFID
39(4)
3.2 UWB-IR Interrogation of Time-Domain Reflectometry-Based Chipless RFID
43(4)
3.3 Time-Domain Analysis of Frequency Signature-Based Chipless RFID
47(1)
3.4 Analysis of Backscatter from a Multiresonator Loaded Chipless Tag
47(8)
3.4.1 System Description and Mathematical Model for Backscatter Analysis
49(4)
3.4.2 Chipless RFID Tag Design
53(2)
3.5 Simulation Results
55(1)
3.6 Processing Results
56(3)
3.7 Analysis of Backscatter from a Multipatch-Based Chipless Tag
59(3)
3.7.1 System Model and Expressions for Backscatter
59(2)
3.7.2 The Design and Operation of the Multipatch- Based Chipless RFID
61(1)
3.8 Electromagnetic Simulation of System
62(6)
3.8.1 Four-Patch Backscattering Chipless Tag
62(4)
3.8.2 Investigation into Reading Distance and Orientation of Tag
66(1)
3.8.3 Measurement Results
67(1)
3.9 Conclusion
68(2)
References
70(1)
4 Singularity Expansion Method For Data Extraction For Chipless RFID 71(22)
4.1 Introduction
71(1)
4.2 The SEM
72(12)
4.2.1 The Complex Frequency Domain
74(3)
4.2.2 Extraction of Poles and Residues
77(1)
4.2.3 Matrix Pencil Algorithm
77(4)
4.2.4 Case Study
81(3)
4.3 Application of SEM for Chipless RFID
84(5)
4.4 Conclusion
89(2)
References
91(2)
5 Denoising And Filtering Techniques For Chipless RFID 93(18)
5.1 Introduction
93(2)
5.2 Matrix Pencil Algorithm-Based Filtering
95(4)
5.3 Noise Suppression Through Signal Space Representation
99(4)
5.4 SSI
103(4)
5.5 Wavelet-Based Filtering of Noise
107(1)
5.6 Conclusion
108(1)
References
109(2)
6 Collision And Error Correction Protocols In Chipless RFID 111(42)
6.1 Introduction
111(2)
6.2 RFID System and Collision
113(2)
6.2.1 Reader-Reader Collision
114(1)
6.2.2 Reader-Tag Collision
114(1)
6.2.3 Tag-Tag Collision
115(1)
6.3 Applications that Involve Multiple Tags
115(3)
6.4 Anticollision Algorithm in Chipped RFID Tags
118(10)
6.4.1 SDMA
119(3)
6.4.2 FDMA
122(1)
6.4.3 CDMA
123(2)
6.4.4 Time Division Multiple Access: TDMA
125(3)
6.5 Anticollision Algorithm for Chipless RFID
128(7)
6.5.1 Linear Block Coding
129(2)
6.5.2 Correlative Signal Processing-Based Approach
131(1)
6.5.3 Walsh-Domain Matched Filtering
131(1)
6.5.4 Spatial Focusing (SDMA)
132(2)
6.5.5 Other Anticollision/Multi-Access Methods
134(1)
6.6 Collision Detection and Multiple Access for Chipless RFID System
135(3)
6.7 Introducing Block Coding in Chipless RFID
138(10)
6.7.1 Coding
139(2)
6.7.2 Block Coding for Collision Detection
141(3)
6.7.3 Block Coding for Improving Data Integrity
144(2)
6.7.4 Advantages and Challenges of Block Coding
146(2)
6.8 Conclusion
148(1)
References
148(5)
7 Multi-Tag Identification Through Time-frequency Analysis 153(30)
7.1 Introduction
153(1)
7.2 t-f Analysis and Chipless RFID Systems
154(3)
7.3 FrFT: Background Theory
157(10)
7.3.1 Linear Frequency Modulated Signal
157(4)
7.3.2 FrFT
161(6)
7.4 System Description
167(7)
7.4.1 ADS Simulation Environment
170(1)
7.4.2 Postprocessing in MATLAB
171(3)
7.5 Results and Discussion
174(6)
7.6 Conclusion
180(1)
References
180(3)
8 FMCW Radar-Based Multi-Tag Identification 183(32)
8.1 Introduction
183(3)
8.2 Background Theory
186(10)
8.2.1 Overview of FMCW RADAR
186(3)
8.2.2 FMCW RADAR Technique for Chipless RFID Systems: Multi-Tag Identification
189(7)
8.3 System Description
196(5)
8.3.1 ADS Simulation Environment
196(3)
8.3.2 Postprocessing in MATLAB
199(2)
8.4 Results and Discussion
201(11)
8.4.1 Collision Detection and Range Extraction
202(4)
8.4.2 Tag Identification
206(6)
8.5 Conclusion
212(1)
References
213(2)
9 Chipless Tag Localization 215(32)
9.1 Introduction
215(1)
9.2 Significance of Localization
216(1)
9.3 Tag localization: Chipless Versus Conventional RFID
217(1)
9.4 Conventional RFID Tag Localization Techniques
218(3)
9.4.1 RTOF Estimation
218(2)
9.4.2 RSS-Based Localization
220(1)
9.4.3 Phase Evaluation Method
220(1)
9.5 Chipless RFID Tag Localization
221(1)
9.6 Benefits of Chipless Tag Localization
222(1)
9.7 Proposed Localization for Chipless RFID Tags
223(10)
9.7.1 Backscattered Signal from Chipless Tag
223(2)
9.7.2 Maximum Detection Range
225(3)
9.7.3 Localization of Tag
228(2)
9.7.4 Ranging of Tag
230(1)
9.7.5 Positioning of Tag
231(2)
9.8 Results and Discussion
233(8)
9.8.1 Simulation Environment
233(1)
9.8.2 Experimental Setup
234(2)
9.8.3 Results and Discussion
236(4)
9.8.4 Unknown Tag Localization
240(1)
9.9 Conclusion
241(1)
References
242(5)
10 State-Of-The-Art Chipless Rfid Reader 247(18)
10.1 Introduction
247(2)
10.2 Challenges in Mass Deployment
249(3)
10.3 Smart RFID Reader
252(9)
10.3.1 Physical Layer (Front End)
253(2)
10.3.2 IT Layer (Back End)
255(6)
10.4 Various Smart Readers
261(2)
10.5 Conclusion
263(1)
References
264(1)
Index 265
Nemai Karmakar, PhD, is the lead researcher at the RFID and Antenna Research Group at Monash University, Australia. He received his PhD in ITEE from the University of Queensland, Australia, in February 1999. Dr. Karmakar is a pioneer in fully printable Chipless RFID tags, readers, signal processing, and smart antennas. He has published more than 350 scientific journal and conference articles, 9 books, 35 book chapters, and 9 patent applications.

Prasanna Kalansuriya, PhD, is an electrical engineer at Clarinox Technologies, Australia. He obtained a PhD in electrical and computer systems engineering at Monash University, Australia in 2014. In 2012, he was a visiting researcher with the Auto-ID Laboratory, Massachusetts Institute of Technology, Cambridge, MA.

Rubayet E Azim is working toward her PhD on Chipless RFID signal processing in electrical and computer systems engineering at Monash University, Australia.

Randika Koswatta, PhD, is a RF design engineer with Hawk Measurement Systems in Melbourne, Australia. He obtained his PhD from the Electrical and Computer Systems Engineering Department of Monash University, Australia in 2013 and completed a bachelors degree in electrical and electronics engineering with first class honors from the University of Peradeniya, Sri Lanka in 2007.