Muutke küpsiste eelistusi

E-raamat: Circuit Simulation

(University of Illinois at Urbana-Champaign)
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 07-Apr-2010
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9780470561201
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 155,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 07-Apr-2010
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9780470561201
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Najm (electrical and computer engineering, U. of Toronto, Canada) describes the numerical techniques and algorithms used in modern electric circuit simulators, focusing on the most commonly used simulation modes: DC analysis and transient analysis. Following the introduction, he examines network equation formulation, emphasizing modified nodal analysis, but also covering the network cycle space and bond space, element stamps, and the question of unique solvability of the system. He then addresses solutions to linear resistive circuits, covering standard methods, as well as numerical error in floating point systems, pivoting for accuracy, sparse matrix methods, pivoting for sparsity, and indirect solution methods. Nonlinear resistive circuits are covered in the next chapter, with a focus on Newton's method and its links to the fixed point method and the conditions that govern its convergence. The final chapter addresses the simulation of linear and nonlinear dynamic circuits, providing treatment of methods for solving ordinary differential equations and covering issues of accuracy and stability of linear multistep methods, as well as advanced topics of time-step control, variable time-step, charge conservation, and the use of charge-based models in simulation. Annotation ©2010 Book News, Inc., Portland, OR (booknews.com)

Circuit simulators are used throughout the electronics industry to verify the performance of electronic components and systems prior to manufacturing. As such, these software systems are indispensable parts of the arsenal of design tools employed by thousands of design engineers across the industry. It is also a topic that is covered in many universities, typically in the area of computer-aided design. This text describes in detail the many numerical techniques and algorithms that are part of modern circuit simulation packages, with an emphasis on the most typically used simulation mode, namely transient analysis. The material is clearly presented, rigorously explained, and sufficient detail is presented to enable the reader to write his/her own circuit simulator. Given how few textbooks are in print on circuit simulation, this text should be a welcome addition to the shelves of many design engineers and computer-aided design practitioners. It is also an excellent text for delivery of a graduate course on the topic.

List of Figures
xiii
List of Tables
xix
Preface xxi
Introduction
1(12)
Device Equations
2(1)
Equation Formulation
3(3)
Solution Techniques
6(2)
Nonlinear Circuits
7(1)
Dynamic Circuits
8(1)
Circuit Simulation Flow
8(5)
Analysis Modes
9(1)
Notes
10(1)
Problems
10(3)
Network Equations
13(36)
Elements and Networks
13(6)
Passive Elements
13(2)
Active Elements
15(2)
Equivalent Circuit Model
17(1)
Network Classification
18(1)
Topological Constraints
19(4)
Network Graphs
19(4)
Cycle Space and Bond Space
23(4)
Current Assignments
23(1)
Voltage Assignments
24(1)
Orthogonal Spaces
24(1)
Topological Constraints
25(1)
Fundamental Circulation
25(2)
Fundamental Potential Difference
27(1)
Formulation of Linear Algebraic Equations
27(15)
Sparse Tableau Analysis
28(1)
Nodal Analysis
29(1)
Unique Solvability
30(2)
Modified Nodal Analysis
32(10)
Formulation of Linear Dynamic Equations
42(7)
Dynamic Element Stamps
43(1)
Unique Solvability
44(1)
Notes
45(1)
Problems
45(4)
Solution of Linear Algebraic Circuit Equations
49(78)
Direct Methods
50(24)
Matrix Preliminaries
50(4)
Gaussian Elimination (GE)
54(6)
LU Factorization
60(11)
Block Gaussian Elimination
71(2)
Cholesky Decomposition
73(1)
Accuracy and Stability of GE
74(23)
Error
75(3)
Floating Point Numbers
78(2)
Norms
80(3)
Stability of GE and LU Factorization
83(3)
Pivoting for Accuracy
86(3)
Conditioning of Ax = b
89(7)
Iterative Refinement
96(1)
Indirect/Iterative Methods
97(7)
Gauss-Jacobi
98(1)
Gauss-Seidel
99(1)
Convergence
100(4)
Partitioning Techniques
104(5)
Node Tearing
104(2)
Direct Methods
106(1)
Indirect Methods
107(2)
Sparse Matrix Techniques
109(18)
Sparse Matrix Storage
110(2)
Sparse GE and LU Factorization
112(1)
Reordering and Sparsity
113(2)
Pivoting for Sparsity
115(1)
Markowitz Pivoting
116(3)
Diagonal Pivoting
119(1)
The Symmetric (SPD) Case
120(2)
Extension to the Non-SPD Case
122(3)
Notes
125(1)
Problems
125(2)
Solution of Nonlinear Algebraic Circuit Equations
127(74)
Nonlinear Network Equations
127(6)
Nonlinear Elements
128(1)
Nonlinear MNA Formulation
129(4)
Preparing for a DC Analysis
133(1)
Solution Techniques
133(21)
Iterative Methods and Convergence
134(2)
Introduction to Newton's Method
136(3)
The One-Dimensional Case
139(9)
The Multidimensional Case
148(4)
Quasi-Newton Methods
152(2)
Application to Circuit Simulation
154(27)
Linearization and Companion Models
154(2)
Some Test Cases
156(6)
Generalization
162(4)
Considerations for Multiterminal Elements
166(1)
Multivariable Differentiation
167(4)
Linearization of Multiterminal Elements
171(5)
Elements with Internal Nodes
176(5)
Quasi-Newton Methods in Simulation
181(20)
Damping Methods
182(4)
Overview of More General Methods
186(1)
Source Stepping
187(2)
Gmin Stepping
189(1)
Pseudo-Transient
189(4)
Justification for Pseudo-Transient
193(3)
Notes
196(1)
Problems
197(4)
Solution of Differential Circuit Equations
201(104)
Differential Network Equations
201(5)
Dynamic Elements
201(2)
Dynamic MNA Equations
203(1)
DAEs and ODEs
204(2)
ODE Solution Techniques
206(15)
ODE Systems and Basic Theorems
206(3)
Overview of Solution Methods
209(2)
Three Basic Methods: FE, BE, and TR
211(4)
Quality Metrics
215(5)
Linear Multistep Methods
220(1)
Accuracy of LMS Methods
221(20)
Order
221(2)
Consistency
223(1)
The Backward Differentiation Formulas
224(1)
Local Truncation Error
225(3)
Deriving the LMS Methods
228(1)
Solving Implicit Methods
229(2)
Interpolation Polynomial
231(6)
Estimating the LTE
237(4)
Stability of LMS Methods
241(16)
Linear Stability Theory
242(1)
The Test Equation
243(3)
Absolute Stability
246(6)
Stiff Systems
252(1)
Stiff Stability
253(3)
Remarks
256(1)
Trapezoidal Ringing
257(4)
Smoothing
258(1)
Extrapolation
259(2)
Variable Time-Step Methods
261(4)
Implementing a Change of Time-Step
262(1)
Interpolation Methods
262(2)
Variable-Coefficient Methods
264(1)
Variable Step Variable Order (VSVO) Methods
265(1)
Application to Circuit Simulation
265(40)
From DAEs to Algebraic Equations
266(3)
FE Discretization
269(2)
BE Discretization
271(6)
TR Discretization
277(5)
Charge-Based and Flux-Based Models
282(9)
Multiterminal Elements
291(5)
Time-Step Control
296(2)
Enhancements
298(1)
Overall Flow
299(1)
Notes
300(1)
Problems
300(5)
Glossary 305(2)
Bibliography 307(4)
Index 311
FARID N. NAJM is a Professor in the Department of Electrical and Computer Engineering (ECE) at the University of Toronto. He received a BE degree in electrical engineering from the American University of Beirut (AUB) in 1983 and a PhD degree in ECE from the University of Illinois at Urbana-Champaign (UIUC) in 1989. He then worked with Texas Instruments before joining the ECE Department at UIUC as assistant professor, later becoming associate professor. Dr. Najm joined the ECE Department at the University of Toronto in 1999, where he is currently Professor and Chair. His expertise is in the area of computer-aided design for integrated circuits, with an emphasis on circuit-level issues related to power, timing, variability, and reliability. Dr. Najm is a Fellow of the IEEE.