Editor |
|
ix | |
Contributors |
|
xi | |
|
PART I CMOS Technology at the Nanoscale |
|
|
|
CMOS: An Emerging Technology System Driver |
|
|
3 | (8) |
|
|
CMOS Rise to Dominance: A Very Brief History |
|
|
3 | (1) |
|
|
4 | (2) |
|
Logic-Based Embedded DRAM CMOS |
|
|
6 | (1) |
|
Logic-Based Embedded Flash CMOS |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
Other Technology Considerations |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
9 | (2) |
|
|
11 | (14) |
|
|
Introduction: Two Directions for Techonology Development |
|
|
11 | (1) |
|
Continuous Shrinking: Memories and Logic |
|
|
12 | (3) |
|
Lithography and OPC: Closing the Subwavelentfh Gap |
|
|
12 | (1) |
|
|
13 | (2) |
|
New Materials for Interconnects |
|
|
15 | (1) |
|
Tehnologies for New Applications: System-on-Chip and Analog/RF |
|
|
15 | (8) |
|
|
15 | (1) |
|
Variability Reduction for MOSFETs and Passive Elements |
|
|
16 | (7) |
|
|
23 | (1) |
|
|
23 | (2) |
|
Variability in Deeply Scaled CMOS |
|
|
25 | (14) |
|
|
|
|
25 | (3) |
|
Characterization of Variations |
|
|
25 | (2) |
|
Lithography-Induced Variations |
|
|
27 | (1) |
|
|
28 | (3) |
|
|
31 | (5) |
|
Effects of Layout on Frequency and Leakage |
|
|
31 | (2) |
|
|
33 | (1) |
|
|
34 | (1) |
|
Inferring Process Parameters |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
36 | (3) |
|
Water-Level Three-Dimensional Integration for Advanced CMOS systems |
|
|
39 | (14) |
|
|
|
|
39 | (1) |
|
Wafter-Level 3D Technology Platforms |
|
|
40 | (4) |
|
|
44 | (2) |
|
Analog/Mixed-Signal Applications |
|
|
46 | (3) |
|
Unique System Architectures |
|
|
49 | (1) |
|
Future Drivers for Wafer-Level 3D in IC Manufacturing |
|
|
49 | (2) |
|
|
50 | (1) |
|
|
50 | (1) |
|
Equipment Infrastructure Drivers |
|
|
50 | (1) |
|
Industryu Infrastructure Drivers |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (2) |
|
CMOS SOI Memory Design Technology |
|
|
53 | (22) |
|
|
|
Background and Future Trends |
|
|
53 | (1) |
|
Low-Power and high-Speed SOI Circuit Design |
|
|
54 | (5) |
|
Demands of Both Low-Power and High-Speed Operation |
|
|
54 | (1) |
|
Dynamic Body-Control Technique |
|
|
55 | (2) |
|
Automatic Sources/Body-Control Technique |
|
|
57 | (2) |
|
|
59 | (11) |
|
Capacitorless Memory Design |
|
|
59 | (1) |
|
|
59 | (3) |
|
|
62 | (4) |
|
|
66 | (1) |
|
Scalable Functions of TTRAM |
|
|
66 | (3) |
|
Actively Body-Bias Controlled SRAM |
|
|
69 | (1) |
|
Feature SOI Technology Trend |
|
|
70 | (2) |
|
|
72 | (3) |
|
|
75 | (20) |
|
|
|
75 | (1) |
|
|
76 | (1) |
|
Applications Driving SiGe Development |
|
|
77 | (1) |
|
|
77 | (3) |
|
Modern SiGe BiCMOS RF Platform |
|
|
80 | (3) |
|
Key Application Trends and Examples |
|
|
83 | (8) |
|
Key Wireless RF Circuit Blocks: Low-Noise Amplifier |
|
|
83 | (1) |
|
Key Wireless RF Circuit Blocks: Power Amplifier |
|
|
84 | (4) |
|
|
88 | (3) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
91 | (4) |
|
PART II Emerging Design Techniques |
|
|
|
Offset, Flicker noise, and Ways to Deal with Them |
|
|
95 | (22) |
|
|
|
95 | (1) |
|
|
96 | (4) |
|
The Nature of Flicker Noise |
|
|
97 | (1) |
|
|
98 | (1) |
|
Memories in MOSFETs and Other Electronic Devices |
|
|
98 | (2) |
|
|
100 | (1) |
|
Flicker Noise Is Offset Extended In Frequency |
|
|
100 | (1) |
|
Techniques to Reduce Flicker Noise |
|
|
100 | (1) |
|
Switched-Capacitor Techniques |
|
|
100 | (3) |
|
Sampled Noise in SC Circuits |
|
|
102 | (1) |
|
Bias Switching and Large-Scale Excitation |
|
|
103 | (2) |
|
|
105 | (4) |
|
Conventional Chopper Amplifier |
|
|
106 | (1) |
|
Multipath Chopper Amplifiers |
|
|
107 | (1) |
|
Chopping in Sampled-Data Systems |
|
|
108 | (1) |
|
Correlated Double Sampling and Auto-Zero Techniques |
|
|
109 | (4) |
|
Switched-Capacitor Comparator with CDS |
|
|
110 | (1) |
|
Switched-Capacitor Amplifier with CDS |
|
|
111 | (1) |
|
Correlated Double Sampling in Sampled Systems |
|
|
112 | (1) |
|
Correlated Double Sampling Combined with Large-Scale Excitation |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
114 | (3) |
|
Design of Wideband Amplifiers in CMOS |
|
|
117 | (18) |
|
|
|
|
|
117 | (2) |
|
Shunt Peaking and Bridged-Shunt Peaking |
|
|
119 | (1) |
|
|
120 | (2) |
|
Bridged-Shunt-Series Peaking |
|
|
122 | (1) |
|
Asymmetric T-Coil Peaking |
|
|
123 | (2) |
|
Design of High-Speed Wideband Differential Amplifiers |
|
|
125 | (1) |
|
Effects of Other Device Parasitics |
|
|
126 | (3) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (3) |
|
|
129 | (1) |
|
|
130 | (2) |
|
|
132 | (1) |
|
|
132 | (3) |
|
CMOS Active Transformers and Their Applications |
|
|
135 | (14) |
|
|
|
135 | (1) |
|
|
136 | (2) |
|
Configuration and Characteristics |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
138 | (7) |
|
|
138 | (1) |
|
|
139 | (1) |
|
Self and Mutual Inductances |
|
|
140 | (1) |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
Nonideal Active Transformer |
|
|
142 | (2) |
|
|
144 | (1) |
|
|
144 | (1) |
|
Applications of DMOS Active Transformers |
|
|
145 | (2) |
|
|
147 | (1) |
|
|
147 | (2) |
|
High-Performance Leakage/Variation-Tolerant Circuit Technologies for 45 nm and Below |
|
|
149 | (10) |
|
|
|
|
149 | (2) |
|
Register File Organization |
|
|
151 | (2) |
|
Bitline Leakage Robustness |
|
|
153 | (1) |
|
Leakage/Process-Tolerant Register File Circuits |
|
|
154 | (2) |
|
Woedline Underdrive Local Bitline |
|
|
154 | (1) |
|
NAND Merge Skew Local Bitline |
|
|
155 | (1) |
|
Process Variation Compensating Dynamic Local Bitline |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
157 | (2) |
|
Soliton and Nonlinear Wave Electronics |
|
|
159 | (28) |
|
|
|
|
|
159 | (2) |
|
Nonlinear Transmissions Line and Electrical Solitons |
|
|
161 | (3) |
|
|
161 | (1) |
|
|
161 | (1) |
|
Propagation and Collision of Electrical Solitons |
|
|
162 | (1) |
|
Forming and Damping of Electrical Solitons |
|
|
162 | (2) |
|
The Electrical Soliton Oscillator |
|
|
164 | (4) |
|
Soliton Oscillator Topology |
|
|
164 | (1) |
|
Oscillation Instability Mechanisms |
|
|
164 | (3) |
|
Taming Electrical Solitons with an Amplifier |
|
|
167 | (1) |
|
|
168 | (1) |
|
First Prototype---Discrete Proof of Concept |
|
|
169 | (8) |
|
|
169 | (2) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
Steady-State Soliton Oscillation |
|
|
173 | (1) |
|
Spatial Soliton Propagation in Steady State |
|
|
173 | (1) |
|
In-Depth Experimental Studies on the Soliton Oscillator Dynamics |
|
|
174 | (1) |
|
Existence of a Limit Cycle |
|
|
174 | (1) |
|
Spatial Dynamics Revisited |
|
|
175 | (2) |
|
Second Prototype---Discrete Microwave Soliton Oscillator |
|
|
177 | (2) |
|
Third Prototype---CMOS Electrical Soliton Oscillator |
|
|
179 | (2) |
|
Chip-Scale Implementation |
|
|
179 | (1) |
|
|
180 | (1) |
|
Soliton Oscillator Summary and Future Directions |
|
|
181 | (1) |
|
Chaotic Soliton Oscillator |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
183 | (4) |
|
PART III Mixed-Signal CMOS Circuits |
|
|
|
Current Steering Digital-to-Analog Converters |
|
|
187 | (26) |
|
|
Digital-to-Analog Converter Basics |
|
|
187 | (5) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
192 | (1) |
|
Current-Mode DACs in CMOS |
|
|
192 | (1) |
|
|
193 | (1) |
|
Static Errors and Matching |
|
|
194 | (3) |
|
|
197 | (2) |
|
|
199 | (2) |
|
Similarities between DAC and Flash ADC |
|
|
201 | (1) |
|
Digital Data Pattern-Dependent Noise |
|
|
202 | (1) |
|
Data-Dependent Clock Loading |
|
|
203 | (2) |
|
|
205 | (4) |
|
|
209 | (1) |
|
Quad Switching/Constant Data Activity |
|
|
209 | (2) |
|
|
211 | (1) |
|
|
211 | (2) |
|
High-Speed, Low-Power CMOS A/D Converter for Software Radio |
|
|
213 | (12) |
|
|
|
|
213 | (1) |
|
|
214 | (2) |
|
High-Speed Subsampling and Oversampling ADCs |
|
|
216 | (1) |
|
High-Speed and Low-Resolution ADC Architectures |
|
|
217 | (4) |
|
|
217 | (3) |
|
Time-Based ADC Architecture |
|
|
220 | (1) |
|
High-Resolution and Multi-GHz ADC Architectures |
|
|
221 | (2) |
|
|
223 | (1) |
|
|
223 | (2) |
|
Energy-Efficientg ADC Topology Enabled with Asynchronous Techniques |
|
|
225 | (20) |
|
|
|
225 | (1) |
|
Power Efficiency of ADC Architecture |
|
|
226 | (1) |
|
|
227 | (3) |
|
Design Example of a 6-bit 600 Ms/s Asynchronous ADC |
|
|
230 | (8) |
|
|
230 | (1) |
|
Dynamic Comparator and Ready Signal |
|
|
231 | (1) |
|
Nonbinary Successive Approximation Review |
|
|
232 | (1) |
|
Series Nonbinary Capacitive Ladder |
|
|
232 | (2) |
|
Digital Calibration Scheme |
|
|
234 | (1) |
|
Variable Duty-Cycled Clock |
|
|
234 | (2) |
|
|
236 | (1) |
|
|
236 | (2) |
|
Scaling Trend of an Asynchronous ADC |
|
|
238 | (2) |
|
Applications of the Proposed ADC Topology |
|
|
240 | (2) |
|
|
242 | (3) |
|
High-Frequency Filters for Data Communication Applications |
|
|
245 | (22) |
|
|
|
|
|
|
245 | (1) |
|
Filter Design: Scaling Fundamentals |
|
|
246 | (2) |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
247 | (1) |
|
Frequency Scaling Under Constant Noise |
|
|
248 | (1) |
|
|
248 | (1) |
|
|
248 | (6) |
|
Architectural Considerations |
|
|
249 | (2) |
|
Building Blocks and Nonidealities |
|
|
251 | (2) |
|
|
253 | (1) |
|
|
254 | (2) |
|
Architectural Considerations |
|
|
255 | (1) |
|
|
256 | (1) |
|
|
256 | (8) |
|
Boost Filter Architecture Using Gm-C Techniques |
|
|
258 | (1) |
|
Boost Filter Architecture Using LC Techniques |
|
|
259 | (2) |
|
Gm-C versus LC Structures |
|
|
261 | (3) |
|
|
264 | (1) |
|
|
264 | (3) |
|
Continuous Time ΣΔ Modulators |
|
|
267 | (22) |
|
|
|
268 | (3) |
|
Survey of Published Designs |
|
|
268 | (2) |
|
|
270 | (1) |
|
Basic Principles of ΣΔ Modulators |
|
|
271 | (1) |
|
Quantization of a Continuous Signal |
|
|
271 | (1) |
|
|
271 | (1) |
|
SNR of an Ideal A/D Converter |
|
|
272 | (1) |
|
|
272 | (3) |
|
|
272 | (1) |
|
ΣΔ Loop Filter Transfer Function |
|
|
273 | (1) |
|
Zero-Delay CT BP ΣΔ Modulators |
|
|
273 | (1) |
|
Delayed CT BP ΣΔ Modulators |
|
|
274 | (1) |
|
CT BP ƒΣΔ Modulator Design |
|
|
275 | (4) |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
277 | (1) |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
279 | (1) |
|
|
279 | (4) |
|
Fractional Delay ΣΔ Upconverter |
|
|
280 | (2) |
|
|
282 | (1) |
|
|
283 | (1) |
|
|
283 | (6) |
|
PART IV Circuits for Communications |
|
|
|
Low-Voltage Nanometer-Scale CMOS RF Front-End Block Design Employing Magnetic Feedback Techniques |
|
|
289 | (30) |
|
|
|
|
|
289 | (1) |
|
Advances in Low-Voltage CMOS Design |
|
|
290 | (1) |
|
Single-Transistor LNA Topologies |
|
|
290 | (12) |
|
Limitations of Single-Transistor LNAs |
|
|
290 | (1) |
|
Reverse Isolation Enhancement Utilizing Magnetic Feedback |
|
|
291 | (2) |
|
Triple Transformer LNA Analysis |
|
|
293 | (2) |
|
|
295 | (1) |
|
Multiple Transformer Layout |
|
|
295 | (1) |
|
|
296 | (1) |
|
Alternative Method for Reverse Isolation Enhancement |
|
|
296 | (6) |
|
LNA Linearization Utilizing Magnetic Feedback |
|
|
302 | (7) |
|
|
303 | (1) |
|
Shunt Transistor Predistorter |
|
|
303 | (1) |
|
Proposed Predistortion Scheme |
|
|
304 | (5) |
|
|
309 | (1) |
|
|
309 | (8) |
|
Conventional Mixer Topology |
|
|
310 | (1) |
|
Alternative Mixer Topology |
|
|
311 | (3) |
|
|
314 | (1) |
|
|
315 | (2) |
|
Integrated Transformer Design Methodology |
|
|
317 | (1) |
|
|
317 | (1) |
|
|
317 | (2) |
|
InGaP-HBT Power Amplifiers |
|
|
319 | (24) |
|
|
|
319 | (2) |
|
|
321 | (9) |
|
Basic Bias Circuit Topology |
|
|
321 | (3) |
|
Bias Drive and AM-AM/AM-PM Characteristics |
|
|
324 | (2) |
|
Bias Circuits and AM-AM/AM-PM Characteristics |
|
|
326 | (4) |
|
Recent Power Amplifier Technologies |
|
|
330 | (8) |
|
Parallel Amplifier Approach |
|
|
331 | (2) |
|
Low-Reference-Voltage Operation Power Amplifier |
|
|
333 | (5) |
|
|
338 | (1) |
|
|
338 | (5) |
|
ΔΣDigital-RF Modulation for Adaptive Wideband Systems |
|
|
343 | (20) |
|
|
|
|
343 | (2) |
|
|
345 | (1) |
|
|
346 | (1) |
|
LC Bandpass Filter Design |
|
|
347 | (9) |
|
|
349 | (1) |
|
|
349 | (1) |
|
|
349 | (2) |
|
Prototype 5.25 GHz Filter Design |
|
|
351 | (1) |
|
|
352 | (1) |
|
|
353 | (1) |
|
|
354 | (2) |
|
|
356 | (1) |
|
Applications for Wideband Digital-RF Modulation |
|
|
357 | (3) |
|
|
360 | (1) |
|
|
360 | (3) |
|
Deep-Submicron CMOS Design Challenges When Integrating the RF Front-End and Digital Baseband in a Single-Chip Receiver SoC |
|
|
363 | (36) |
|
|
|
363 | (1) |
|
Single-Chip Receviver SoC Top Level |
|
|
364 | (1) |
|
Spur Coupling in Mixed-Signal Single-Chip Receiver SoCs |
|
|
365 | (3) |
|
Front-End LNA Spur Reduction |
|
|
368 | (1) |
|
LNA-Mixer Interface Spur Reduction |
|
|
369 | (1) |
|
RF Frequency Synthesizer Spur Reduction |
|
|
370 | (8) |
|
Low-Noise, High-Supply Rejection Regulators |
|
|
378 | (6) |
|
|
384 | (2) |
|
Quadrature Generator Spur Reduction |
|
|
386 | (1) |
|
IF Path Supply Spur Remixing |
|
|
387 | (2) |
|
Digital Core Clock Generation and Spur Management Techniques |
|
|
389 | (2) |
|
|
391 | (1) |
|
Digital Regulator with High-Reverse Rejection Ratio |
|
|
392 | (1) |
|
Shielding Considerations of Sensitive Signal Lines |
|
|
393 | (1) |
|
Digital Control Lines Spur and Noise Rejection |
|
|
394 | (1) |
|
|
395 | (1) |
|
|
396 | (3) |
|
Mitigation of CMOS Device Variability in Digital RF Processor |
|
|
399 | (20) |
|
|
|
|
399 | (4) |
|
Mismatches in Digital-to-RF-Amplitude Converter |
|
|
403 | (5) |
|
Mismatches in Digitally Controlled Oscillator |
|
|
408 | (8) |
|
Varactor Structure in Nanoscale CMOS |
|
|
409 | (1) |
|
Fully Digital Control of a CMOS Oscillator |
|
|
410 | (1) |
|
Modeling of Varactor Mismatches |
|
|
411 | (1) |
|
Assessment of Physical Device Mismatches |
|
|
412 | (4) |
|
|
416 | (1) |
|
|
416 | (3) |
|
Front-End Circuits for Multi-Gb/x Chip-to-Chip Links |
|
|
419 | (18) |
|
|
|
419 | (1) |
|
|
420 | (2) |
|
|
421 | (1) |
|
Serial Links Over Backplanes |
|
|
421 | (1) |
|
|
422 | (5) |
|
|
422 | (2) |
|
|
424 | (1) |
|
|
425 | (2) |
|
|
427 | (4) |
|
|
427 | (2) |
|
|
429 | (1) |
|
|
430 | (1) |
|
|
431 | (1) |
|
|
431 | (1) |
|
|
432 | (1) |
|
|
432 | (1) |
|
|
433 | (1) |
|
|
433 | (1) |
|
|
433 | (1) |
|
|
434 | (1) |
|
|
434 | (1) |
|
|
434 | (1) |
|
|
434 | (3) |
|
Clock and Data Recovery Circuits |
|
|
437 | (20) |
|
|
|
437 | (1) |
|
Injection-Locked CDR Circuit |
|
|
438 | (1) |
|
|
439 | (5) |
|
|
440 | (1) |
|
|
440 | (1) |
|
|
440 | (1) |
|
|
441 | (1) |
|
|
441 | (1) |
|
|
442 | (1) |
|
Aided Frequency Acquisition |
|
|
443 | (1) |
|
Phase-Rotating CDR Circuit |
|
|
444 | (2) |
|
Fully Digital CDR Circuit |
|
|
446 | (2) |
|
LC Oscillators in CDR Circuits |
|
|
448 | (2) |
|
|
450 | (2) |
|
|
452 | (1) |
|
|
452 | (5) |
|
PART V Circuits for Imaging and Sensing |
|
|
|
Low Power CMOS Imager Circuits |
|
|
457 | (28) |
|
|
|
|
458 | (1) |
|
Smart CMOS Image Sensor Architecture |
|
|
459 | (4) |
|
Active Pixel Sensor Pixel Array |
|
|
460 | (1) |
|
|
461 | (1) |
|
|
461 | (1) |
|
Analog-to-Digital Conversion |
|
|
462 | (1) |
|
|
462 | (1) |
|
|
463 | (1) |
|
|
463 | (1) |
|
Sources of Power Dissipation in Image Sensors |
|
|
463 | (7) |
|
Sensor Array Power Dissipation |
|
|
464 | (2) |
|
Power Dissipation in Scanning Circuitry |
|
|
466 | (1) |
|
Analog Front End Power Dissipation |
|
|
467 | (1) |
|
Power Dissipation in Analog-to-Digital Conversion |
|
|
468 | (1) |
|
Power Dissipation in Bandgap Reference and Current Generators |
|
|
468 | (1) |
|
Power Dissipation in Digital Timing and Control Block |
|
|
468 | (1) |
|
Power Dissipation in Image Processing |
|
|
469 | (1) |
|
Power Reduction in Smart CMOS Image Sensors |
|
|
470 | (11) |
|
Power Reduction at the Technology and Device Levels |
|
|
470 | (1) |
|
|
470 | (1) |
|
Practical Example---Self-Powered Active Pixel Sensors |
|
|
471 | (3) |
|
Power Reduction at the Algorithm and Architecture Levels |
|
|
474 | (1) |
|
|
474 | (1) |
|
Practical Example---Sensor for Multiple Targets Detection and Tracking |
|
|
475 | (2) |
|
Power Reduction at the Circuit and Logic Levels |
|
|
477 | (1) |
|
|
477 | (1) |
|
|
478 | (1) |
|
Power-Efficient Digital Control Circuitry |
|
|
478 | (1) |
|
Optimization of Sensor Output Chains |
|
|
478 | (1) |
|
Practical Example---Wide Dynamic Range Snapshot APS |
|
|
479 | (2) |
|
|
481 | (1) |
|
|
481 | (4) |
|
CMOS IMager Array Design, Operation, and Trends |
|
|
485 | (18) |
|
|
|
|
|
485 | (1) |
|
|
485 | (6) |
|
|
485 | (1) |
|
|
486 | (2) |
|
|
488 | (1) |
|
Global Shutter and Specially Pixels |
|
|
489 | (2) |
|
|
491 | (5) |
|
|
491 | (1) |
|
|
492 | (1) |
|
|
493 | (2) |
|
Correlated Double Sample Readout |
|
|
495 | (1) |
|
|
496 | (5) |
|
Scaling and Optical Transmission |
|
|
497 | (1) |
|
Scaling and Signal Capacity |
|
|
498 | (2) |
|
|
500 | (1) |
|
|
501 | (1) |
|
|
501 | (2) |
|
Wide Dynamic Range CMOS Cameras |
|
|
503 | (18) |
|
|
|
|
|
|
503 | (1) |
|
|
504 | (1) |
|
|
505 | (5) |
|
Logarithmic Pixels with Reset |
|
|
510 | (3) |
|
Integrating Pixels with a Logarithmic Response |
|
|
513 | (4) |
|
|
517 | (2) |
|
|
519 | (2) |
|
CMOS Focal Plane Spatially Oversampling Computational Image Sensor |
|
|
521 | (18) |
|
|
|
|
521 | (1) |
|
Block-Matrix and Convolutional Transforms |
|
|
522 | (3) |
|
Discrete Wavelet Transform: Haar Wavelet Example |
|
|
523 | (2) |
|
|
525 | (1) |
|
|
526 | (2) |
|
Computational Quantization |
|
|
528 | (5) |
|
|
528 | (1) |
|
ΔΣ- Modulated Multiplying ADC |
|
|
529 | (1) |
|
ΔΣ- Modulated Weighted Averaging ADC |
|
|
530 | (2) |
|
|
532 | (1) |
|
|
533 | (1) |
|
|
533 | (1) |
|
|
534 | (3) |
|
|
537 | (1) |
|
|
537 | (2) |
|
Unified Computer Arithmetic for Handheld GPUs |
|
|
539 | (22) |
|
|
|
|
|
539 | (1) |
|
Handheld 3D Computer Graphics |
|
|
540 | (2) |
|
|
540 | (1) |
|
|
541 | (1) |
|
|
541 | (1) |
|
Standard APIs for Handheld 3D Graphics |
|
|
541 | (1) |
|
Computer Arithmetic for Handheld GPUs |
|
|
542 | (4) |
|
Floating Point Arithmetic |
|
|
543 | (2) |
|
|
545 | (1) |
|
Philosophy of Unified Computer Arithmetic |
|
|
546 | (1) |
|
Unified Vector and Elementary Function Unit |
|
|
547 | (12) |
|
Fixed Point Hybrid Number System |
|
|
547 | (1) |
|
|
548 | (1) |
|
|
548 | (1) |
|
Antilograrithmic Converter |
|
|
549 | (1) |
|
FXP-HNS Unified Arithmetic Unit |
|
|
549 | (2) |
|
|
551 | (2) |
|
|
553 | (4) |
|
|
557 | (2) |
|
|
559 | (1) |
|
|
559 | (2) |
|
Sense Circuits for Integrated Sensors |
|
|
561 | (14) |
|
|
|
|
561 | (1) |
|
Sensor and Circuit Nonidealities |
|
|
562 | (2) |
|
|
562 | (1) |
|
|
563 | (1) |
|
|
563 | (1) |
|
|
564 | (1) |
|
Techniques to Reduce Offset and Low-Frequency Noise |
|
|
564 | (4) |
|
|
564 | (1) |
|
|
565 | (1) |
|
Correlated Double Sampling |
|
|
566 | (1) |
|
|
567 | (1) |
|
|
567 | (1) |
|
|
568 | (1) |
|
|
568 | (1) |
|
Nonidealities in Hall Sensors |
|
|
568 | (1) |
|
|
569 | (3) |
|
Accelerometers and Gyroscopes |
|
|
569 | (2) |
|
|
571 | (1) |
|
|
572 | (1) |
|
|
572 | (3) |
|
Detector Interface Circuits for X-Ray Imaging |
|
|
575 | (26) |
|
|
|
575 | (1) |
|
|
576 | (1) |
|
Semiconductor Material for Detector |
|
|
576 | (1) |
|
|
576 | (1) |
|
Requirements and Limitations of the Front-End Electronics for Digital X-Ray Imaging |
|
|
577 | (2) |
|
Charge-Sensitive Amplifier |
|
|
579 | (6) |
|
|
579 | (4) |
|
|
583 | (2) |
|
|
585 | (1) |
|
Analog-to-Digital Conversion in Multichannel IC |
|
|
586 | (2) |
|
Physical Implementation Aspects |
|
|
588 | (3) |
|
Crosstalk in Mixed-Mode IC |
|
|
588 | (1) |
|
|
589 | (2) |
|
Examples of Multichannel Readout ICs |
|
|
591 | (6) |
|
DEDIX IC---Fast Digital X-Ray Imaging |
|
|
591 | (2) |
|
Peak Detector Derandomizer ASIC |
|
|
593 | (1) |
|
|
594 | (2) |
|
|
596 | (1) |
|
|
597 | (4) |
|
CMOS Systems and Interfaces for Microgyroscopes |
|
|
601 | (22) |
|
|
|
|
|
601 | (2) |
|
|
602 | (1) |
|
Applications of MEMS Gyroscopes |
|
|
602 | (1) |
|
|
603 | (1) |
|
|
603 | (1) |
|
|
603 | (1) |
|
Zero Rate Output and Bias Stability |
|
|
604 | (1) |
|
Bandwidth and Dynamic Range |
|
|
604 | (1) |
|
Review of Micromachined Gyroscopes |
|
|
604 | (2) |
|
Electronic Control Systems in Gyroscopes |
|
|
606 | (3) |
|
|
608 | (1) |
|
|
608 | (1) |
|
|
608 | (1) |
|
|
608 | (1) |
|
|
609 | (1) |
|
Case Study---Mode-Matched Tuning Fork Gyroscope |
|
|
609 | (10) |
|
Challenges and Trade-offs in Microgyro Interfacing |
|
|
610 | (1) |
|
Review of Microgyro Front-Ends |
|
|
611 | (1) |
|
Transimpedance Front-Ends for Motional Current Detection |
|
|
612 | (1) |
|
Low-Noise Wide Dynamic Range T-Network TIA |
|
|
613 | (1) |
|
|
613 | (2) |
|
|
615 | (1) |
|
|
616 | (2) |
|
|
618 | (1) |
|
Future Directions and Conclusions |
|
|
619 | (2) |
|
|
621 | (2) |
|
Analog Front End for a Micromachined Probe Storage Device |
|
|
623 | (22) |
|
|
|
|
|
|
|
|
|
|
623 | (2) |
|
Analog Front-End Chip Architecture |
|
|
625 | (3) |
|
|
626 | (1) |
|
|
627 | (1) |
|
|
628 | (7) |
|
|
630 | (2) |
|
Mechanical/Electrostatic Model |
|
|
632 | (3) |
|
Model of Tip-Surface Contact |
|
|
635 | (1) |
|
|
635 | (1) |
|
Verification of Cantilever Model |
|
|
635 | (2) |
|
|
635 | (1) |
|
Electrostatic/Mechanical Model |
|
|
635 | (2) |
|
|
637 | (3) |
|
|
637 | (1) |
|
Model-based Optimization of Power/Signal-to-Noise Ratio |
|
|
638 | (2) |
|
|
640 | (1) |
|
|
641 | (1) |
|
|
641 | (1) |
|
|
641 | (4) |
Index |
|
645 | |