Muutke küpsiste eelistusi

E-raamat: Circuits, Signals, and Systems for Bioengineers: A MATLAB-Based Introduction

(Rutgers University and Robert Wood Johnson Medical School-University of Medicine & Dentistry of New Jersey, New Brunswick, USA)
  • Formaat: EPUB+DRM
  • Sari: Biomedical Engineering
  • Ilmumisaeg: 07-Dec-2017
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128096260
  • Formaat - EPUB+DRM
  • Hind: 98,27 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Biomedical Engineering
  • Ilmumisaeg: 07-Dec-2017
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128096260

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Circuits, Signals and Systems for Bioengineers guides the reader through the electrical engineering principles that can be applied to biological systems. It explains in detail the basic engineering concepts that underlie biomedical systems, medical devices, biocontrol, and biomedical signal analysis, providing a solid foundation for students in important bioengineering concepts.

Fully revised and updated to better meet the needs of instructors and students, the third edition introduces and develops concepts through computational methods that allow students to explore operations such as correlations, convolution, the Fourier transform, or the transfer function. New chapters have been added on image analysis, noise, stochastic processes, and ergodicity, and new medical examples and applications have been added throughout the text.

  • Covers current applications in biocontrol, with examples from physiological systems modeling such as the respiratory system
  • Revised throughout, with improved clarity of presentation, and more biological, physiological, and medical examples and applications
  • Includes new chapter on noise, stochastic processes, non-stationary, ergodicity
  • Coverage of image analysis has been expanded and made into a separate chapter
  • Larger, more open-ended projects have been added to examples and problems
  • Accompanying Instructor website includes support materials such as solutions, lecture slides, MATLAB data and functions needed to solve the problems, and all of the MATLAB examples. Visit www.textbooks.elsevier.com"

Muu info

This fully revised third edition provides a solid foundation in basic bioengineering concepts underlying biomedical systems, medical devices and biocontrol
Preface to the Third Edition xi
Acknowledgments xiii
I SIGNALS
1 The Big Picture: Bioengineering Signals and Systems
1.1 Why Biomedical Engineers Need to Analyze Signals and Systems
3(3)
1.2 Biosignal: Signals Produced by Living Systems
6(15)
1.3 Noise
21(8)
1.4 Biological Systems
29(18)
1.5 Summary
47(4)
Problems
49(2)
2 Signal Analysis in the Time Domain
2.1 Goals of This
Chapter
51(1)
2.2 Time Domain Measurements
52(16)
2.3 The Basic Waveform: Sinusoids
68(8)
2.4 Time Domain Analysis
76(30)
2.5 Summary
106(5)
Problems
107(4)
3 Signal Analysis in the Frequency Domain: The Fourier Series and the Fourier Transformation
3.1 Goals of This
Chapter
111(1)
3.2 Time---Frequency Domains: General Concepts
112(1)
3.3 Time---Frequency Transformation of Continuous Signals
113(24)
3.4 Time---Frequency Transformation in the Discrete Domain
137(23)
3.5 Summary
160(9)
Problems
161(8)
4 Signal Analysis in the Frequency Domain---Implications and Applications
4.1 Goals of This
Chapter
169(1)
4.2 Data Acquisition and Storage
170(16)
4.3 Power Spectrum
186(4)
4.4 Spectral Averaging
190(5)
4.5 Signal Bandwidth
195(5)
4.6 Time---Frequency Analysis
200(1)
4.7 Summary
201(8)
Problems
203(6)
II SYSTEMS
5 Linear Systems Analysis in the Time Domain---Convolution
5.1 Goals of This
Chapter
209(1)
5.2 Linear Systems Analysis---An Overview
209(2)
5.3 A Slice in Time: The Impulse Signal
211(5)
5.4 Using the Impulse Response to Find a Systems Output to Any Input---Convolution
216(12)
5.5 Applied Convolution---Basic Filters
228(6)
5.6 Convolution in the Frequency Domain
234(3)
5.7 Summary
237(8)
Problems
238(7)
6 Linear Systems in the Frequency Domain: The Transfer Function
6.1 Goals of This
Chapter
245(1)
6.2 Systems Analysis Models
246(3)
6.3 The Response of System Elements to Sinusoidal Inputs: Phasor Analysis
249(4)
6.4 The Transfer Function
253(8)
6.5 The Spectrum of System Elements: The Bode Plot
261(14)
6.6 Bode Plots Combining Multiple Elements
275(10)
6.7 The Transfer Function and the Fourier Transform
285(3)
6.8 Summary
288(7)
Problems
289(6)
7 Linear Systems in the Complex Frequency Domain: The Laplace Transform
7.1 Goals of This
Chapter
295(2)
7.2 The Laplace Transform
297(5)
7.3 The Laplace Domain Transfer Function
302(22)
7.4 Nonzero Initial Conditions---Initial and Final Value Theorems
324(4)
7.5 The Laplace Domain, the Frequency Domain, and the Time Domain
328(3)
7.6 System Identification
331(7)
7.7 Summary
338(7)
Problems
339(6)
8 Analysis of Discrete Linear Systems---The z-Transform and Applications to Filters
8.1 Goals of This
Chapter
345(2)
8.2 The z-Transform
347(6)
8.3 Difference Equations
353(3)
8.4 Linear Filters---Introduction
356(8)
8.5 Design of Finite Impulse Response Filters
364(16)
8.6 Finite Impulse Response and Infinite Impulse Response Filter Design Using the Signal Processing Toolbox
380(10)
8.7 Summary
390(9)
Problems
392(7)
9 System Simulation and Simulink
9.1 Goals of This
Chapter
399(1)
9.2 Digital Simulation of Continuous Systems
400(3)
9.3 Introduction to Simulink
403(19)
9.4 Improving Control System Performance: The PID controller
422(7)
9.5 Biological Examples
429(11)
9.6 Summary
440(9)
Problems
440(9)
10 Stochastic, Nonstationary, and Nonlinear Systems and Signals
10.1 Goals of This
Chapter
449(1)
10.2 Stochastic Processes: Stationarity and Ergodicity
450(10)
10.3 Signal Nonlinearity
460(23)
10.4 Summary
483(8)
Problems
485(4)
Detrended Fluctuation Analysis
489(2)
11 Two-Dimensional Signals---Basic Image Analysis
11.1 Goals of This
Chapter
491(1)
11.2 Image Format and Display
492(3)
11.3 The Two-Dimensional Fourier Transform
495(4)
11.4 Linear Filtering
499(10)
11.5 Image Segmentation
509(12)
11.6 Summary
521(8)
Problems
522(7)
III CIRCUITS
12 Circuit Elements and Circuit Variables
12.1 Goals of This
Chapter
529(1)
12.2 System Variables: The Signals of Electrical and Mechanical Systems
530(4)
12.3 Analog System Versus General Systems
534(1)
12.4 Electrical Elements
535(13)
12.5 Phasor Analysis
548(6)
12.6 Laplace Domain---Electrical Elements
554(5)
12.7 Summary: Electrical Elements
559(1)
12.8 Mechanical Elements
560(13)
12.9 Summary
573(4)
Problems
573(4)
13 Analysis of Analog Circuits and Models
13.1 Goals of This
Chapter
577(1)
13.2 Conservation Laws: Kirchhoff's Voltage Law
578(18)
13.3 Conservation Laws: Kirchhoff's Current Law---Nodal Analysis
596(5)
13.4 Conservation Laws: Newton's Law---Mechanical Systems
601(6)
13.5 Resonance
607(15)
13.6 Summary
622(9)
Problems
623(8)
14 Circuit Reduction: Simplifications
14.1 Goals of the
Chapter
631(1)
14.2 System Simplifications---Passive Network Reduction
632(5)
14.3 Network Reduction---Passive Networks
637(9)
14.4 Ideal and Real Sources
646(11)
14.5 Thevenin and Norton Theorems: Network Reduction With Sources
657(5)
14.6 Measurement Loading
662(5)
14.7 Mechanical Systems
667(6)
14.8 Multiple Sources---Revisited
673(2)
14.9 Summary
675(6)
Problems
676(5)
15 Basic Analog Electronics: Operational Amplifiers
15.1 Goals of This
Chapter
681(1)
15.2 The Amplifier
682(2)
15.3 The Operational Amplifier
684(2)
15.4 The Noninverting Amplifier
686(2)
15.5 The Inverting Amplifier
688(3)
15.6 Practical Op Amps
691(16)
15.7 Power Supply
707(2)
15.8 Operational Amplifier Circuits or 101 Things to Do With an Operational Amplifier
709(10)
15.9 Summary
719(8)
Problems
720(7)
APPENDICES
Appendix A Derivations
727(6)
Appendix B Laplace Transforms and Properties of the Fourier Transform
733(2)
Appendix C Trigonometric and Other Formulae
735(2)
Appendix D Conversion Factors: Units
737(6)
Appendix E Complex Arithmetic
743(4)
Appendix F LF356 Specifications
747(2)
Appendix G Determinants and Cramer's Rule
749(2)
Bibliography 751(2)
Index 753
John Semmlow was a professor in the Department of Biomedical Engineering of Rutgers University and in the Department of Surgery of Robert Wood Johnson Medical School UMDNJ for 32 years. Over that period he published over 100 review journal articles and has been appointed a Fellow of the IEEE, the AIMBE, and the BMES. He retired in June of 2010, but still remains active in research, particularly cardiovascular diagnosis and human motor control. He is actively pursuing a second career as an artist, designing and building computer controlled kinetic art: sculptures that move in interesting and intriguing ways.