Muutke küpsiste eelistusi

E-raamat: Classical and Quantum 6j-symbols

  • Formaat: 176 pages
  • Sari: Mathematical Notes
  • Ilmumisaeg: 10-Aug-2021
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691234670
  • Formaat - PDF+DRM
  • Hind: 77,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 176 pages
  • Sari: Mathematical Notes
  • Ilmumisaeg: 10-Aug-2021
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691234670

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Addressing physicists and mathematicians alike, this book discusses the finite dimensional representation theory of sl(2), both classical and quantum. Covering representations of U(sl(2)), quantum sl(2), the quantum trace and color representations, and the Turaev-Viro invariant, this work is useful to graduate students and professionals.The classic subject of representations of U(sl(2)) is equivalent to the physicists theory of quantum angular momentum. This material is developed in an elementary way using spin-networks and the Temperley-Lieb algebra to organize computations that have posed difficulties in earlier treatments of the subject. The emphasis is on the 6j-symbols and the identities among them, especially the Biedenharn-Elliott and orthogonality identities. The chapter on the quantum group Uq(sl(2)) develops the representation theory in strict analogy with the classical case, wherein the authors interpret the Kauffman bracket and the associated quantum spin-networks algebraically. The authors then explore instances where the quantum parameter q is a root of unity, which calls for a representation theory of a decidedly different flavor. The theory in this case is developed, modulo the trace zero representations, in order to arrive at a finite theory suitable for topological applications. The Turaev-Viro invariant for 3-manifolds is defined combinatorially using the theory developed in the preceding chapters. Since the background from the classical, quantum, and quantum root of unity cases has been explained thoroughly, the definition of this invariant is completely contained and justified within the text.

Arvustused

"Overall this book would serve as an excellent introduction for students or mathematicians to any of the subjects included (representation theory of U(sl2) and Uq(sl2), Penrose/Kauffman style diagrammatics, Turaev-Viro theory)... "--Mathematical Reviews

Foreword ix
Introduction
3(4)
Representations of U(sl(2))
7(60)
Basic definitions
7(1)
Finite dimensional irreducible representations
7(5)
Diagrammatics of U (sl(2)) invariant maps
12(3)
The Temperley-Lieb algebra
15(6)
Tensor Products of irreducible representations
21(6)
The 6j-symbols
27(16)
Computations
43(20)
A recursion formula for the 6j-symbols
63(2)
Remarks
65(2)
Quantum sl(2)
67(60)
Some finite dimensional representations
67(3)
Representations of the braid groups
70(4)
A finite dimensional quotient of C[ B(n)]
74(3)
A model for the representations VjA
77(3)
The Jones-Wentzl projectors
80(13)
The quantum Clebsch-Gordan theory
93(6)
Quantum network evaluation
99(7)
The quantum 6j-symbols--generic case
106(4)
Diagrammatics of weight vectors (quantum case)
110(1)
Twisting rules
111(12)
Symmetries
123(2)
Further identities among the quantum 6j-symbols
125(2)
The Quantum Trace and Color Representations
127(24)
The quantum trace
127(3)
A bilinear form on tangle diagrams
130(3)
Color representations
133(6)
The quantum 6j-symbol--root of unity case
139(12)
The Turaev-Viro Invariant
151(9)
The definition of the Turaev-Viro invariant
151(6)
Epilogue
157(3)
References 160


J. Scott Carter is Associate Professor and Daniel E. Flath is Associate Professor, both in the Department of Mathematics at the University of South Alabama. Masahico Saito is Assistant Professor of Mathematics at the University of South Florida.