Muutke küpsiste eelistusi

E-raamat: Classical Summability Theory

  • Formaat: PDF+DRM
  • Ilmumisaeg: 25-Apr-2017
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811042058
  • Formaat - PDF+DRM
  • Hind: 92,01 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 25-Apr-2017
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811042058

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents results about certain summability methods, such as the Abel method, the Norlund method, the Weighted mean method, the Euler method and the Natarajan method, which have not appeared in many standard books. It proves a few results on the Cauchy multiplication of certain summable series and some product theorems. It also proves a number of Steinhaus type theorems. In addition, it introduces a new definition of convergence of a double sequence and double series and proves the Silverman-Toeplitz theorem for four-dimensional infinite matrices, as well as Schur's and Steinhaus theorems for four-dimensional infinite matrices. The Norlund method, the Weighted mean method and the Natarajan method for double sequences are also discussed in the context of the new definition. Divided into six chapters, the book supplements the material already discussed in G.H.Hardy's Divergent Series. It appeals to young researchers and experienced mathematicians who wish to explore new areas in Summability Theory..

1 General Summability Theory and Steinhaus Type Theorems
1(26)
1.1 Basic Definitions and Concepts
1(2)
1.2 The Silverman-Toeplitz Theorem, Schur's Theorem, and Steinhaus Theorem
3(10)
1.3 A Steinhaus Type Theorem
13(3)
1.4 The Role Played by the Sequence Spaces Ar
16(3)
1.5 More Steinhaus Type Theorems
19(8)
References
25(2)
2 Core of a Sequence and the Matrix Class (l, l)
27(10)
2.1 Core of a Sequence
27(1)
2.2 Natarajan's Theorem and Knopp's Core Theorem
28(3)
2.3 Some Results for the Matrix Class (l, l)
31(4)
2.4 A Mercerian Theorem
35(2)
References
36(1)
3 Special Summability Methods
37(26)
3.1 Weighted Mean Method
37(11)
3.2 (M, λn) Method or Natarajan Method
48(6)
3.3 The Abel Method and the (M, λn) Method
54(1)
3.4 The Euler Method and the (M, λn) Method
55(8)
References
61(2)
4 More Properties of the (M, λn) Method and Cauchy Multiplication of Certain Summable Series
63(20)
4.1 Some Nice Properties of the (M, λn) Method
63(6)
4.2 Iteration of (M, λn) Methods
69(4)
4.3 Cauchy Multiplication of (M, λn)-Summable Series
73(4)
4.4 Cauchy Multiplication of Euler Summable Series
77(6)
References
82(1)
5 The Silverman-Toeplitz, Schur, and Steinhaus Theorems for Four-Dimensional Infinite Matrices
83(18)
5.1 A New Definition of Convergence of a Double Sequence and a Double Series
83(2)
5.2 The Silverman-Toeplitz Theorem for Four-Dimensional Infinite Matrices
85(9)
5.3 The Schur and Steinhaus Theorems for Four-Dimensional Infinite Matrices
94(7)
References
100(1)
6 The Norlund, Weighted Mean, and (M, λm,n) Methods for Double Sequences
101(28)
6.1 Norlund Method for Double Sequences
101(6)
6.2 Weighted Mean Method for Double Sequences
107(13)
6.3 (M, λm,n) or Natarajan Method for Double Sequences
120(9)
References
128(1)
Index 129
P.N. NATARAJAN, formerly with the Department of Mathematics, Ramakrishna Mission Vivekananda College, Chennai, India, has been an independent researcher and mathematician since his retirement in 2004. He did his Ph.D. at the University of Madras, under Prof. M.S. Rangachari, former director and head of the Ramanujan Institute for Advanced Study in Mathematics, University of Madras. An active researcher, Prof. Natarajan has published over 100 research papers in several international journals like the Proceedings of the American Mathematical Society, Bulletin of the London Mathematical Society, Indagationes Mathematicae, Annales Mathematiques Blaise Pascal, and Commentationes Mathematicae (Prace Matematyczne). His research interests include summability theory and functional analysis (both classical and ultrametric). Professor Natarajan was honored with the Dr. Radhakrishnan Award for the Best Teacher in Mathematics for the year 199091 by the Government of Tamil Nadu. In addition to being invited to visit several renowned institutes in Canada, France, Holland and Greece Prof. Natarajan has participated in several international conferences and chaired sessions. He has authored two books, An Introduction to Ultrametric Summability Theory and its second edition, both published with Springer in 2013 and 2015, respectively.