Muutke küpsiste eelistusi

E-raamat: Classification, Clustering, and Data Mining Applications: Proceedings of the Meeting of the International Federation of Classification Societies (IFCS), Illinois Institute of Technology, Chicago, 15-18 July 2004

Edited by , Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Modern data analysis stands at the interface of statistics, computer science, and discrete mathematics. This volume describes new methods in this area, with special emphasis on classification and cluster analysis. Those methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.

This volume describes new methods with special emphasis on classification and cluster analysis. These methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.

Muu info

Springer Book Archives
I New Methods in Cluster Analysis.- Thinking Ultrametrically.-
Clustering by Vertex Density in a Graph.- Clustering by Ant Colony
Optimization.- A Dynamic Cluster Algorithm Based on Lr Distances for
Quantitative Data.- The Last Step of a New Divisive Monothetic Clustering
Method: the Gluing-Back Criterion.- Standardizing Variables in K-means
Clustering.- A Self-Organizing Map for Dissimilarity Data.- Another Version
of the Block EM Algorithm.- Controlling the Level of Separation of Components
in Monte Carlo Studies of Latent Class Models.- Fixing Parameters in the
Constrained Hierarchical Classification Method: Application to Digital Image
Segmentation.- New Approaches for Sum-of-Diameters Clustering.- Spatial
Pyramidal Clustering Based on a Tessellation.- II Modern Nonparametrics.-
Relative Projection Pursuit and its Application.- Priors for Neural
Networks.- Combining Models in Discrete Discriminant Analysis Through a
Committee of Methods.- Phoneme Discrimination with Functional Multi-Layer
Perceptrons.- PLS Approach for Clusterwise Linear Regression on Functional
Data.- On Classification and Regression Trees for Multiple Responses.-
Subsetting Kernel Regression Models Using Genetic Algorithm and the
Information Measure of Complexity.- Cherry-Picking as a Robustness Tool.- III
Classification and Dimension Reduction.- Academic Obsessions and
Classification Realities: Ignoring Practicalities in Supervised
Classification.- Modified Biplots for Enhancing Two-Class Discriminant
Analysis.- Weighted Likelihood Estimation of Person Locations in an Unfolding
Model for Polytomous Responses.- Classification of Geospatial Lattice Data
and their Graphical Representation.- Degenerate Expectation-Maximization
Algorithm for Local Dimension Reduction.- A Dimension Reduction Techniquefor
Local Linear Regression.- Reducing the Number of Variables Using Implicative
Analysis.- Optimal Discretization of Quantitative Attributes for Association
Rules.- IV Symbolic Data Analysis.- Clustering Methods in Symbolic Data
Analysis.- Dependencies in Bivariate Interval-Valued Symbolic Data.-
Clustering of Symbolic Objects Described by Multi-Valued and Modal
Variables.- A Hausdorff Distance Between Hyper-Rectangles for Clustering
Interval Data.- Kolmogorov-Smirnov for Decision Trees on Interval and
Histogram Variables.- Dynamic Cluster Methods for Interval Data Based on
Mahalanobis Distances.- A Symbolic Model-Based Approach for Making
Collaborative Group Recommendations.- Probabilistic Allocation of Aggregated
Statistical Units in Classification Trees for Symbolic Class Description.-
Building Small Scale Models of Multi-Entity Databases by Clustering.- V
Taxonomy and Medicine.- Phylogenetic Closure Operations and Homoplasy-Free
Evolution.- Consensus of Classification Systems, with Adams Results
Revisited.- Symbolic Linear Regression with Taxonomies.- Determining
Horizontal Gene Transfers in Species Classification: Unique Scenario.- Active
and Passive Learning to Explore a Complex Metabolism Data Set.- Mathematical
and Statistical Modeling of Acute Inflammation.- Combining Functional MRI
Data on Multiple Subjects.- Classifying the State of Parkinsonism by Using
Electronic Force Platform Measures of Balance.- Subject Filtering for Passive
Biometric Monitoring.- VI Text Mining.- Mining Massive Text Data and
Developing Tracking Statistics.- Contributions of Textual Data Analysis to
Text Retrieval.- Automated Resolution of Noisy Bibliographic References.-
Choosing the Right Bigrams for Information Retrieval.- A Mixture Clustering
Model for Pseudo Feedback inInformation Retrieval.- Analysis of
Cross-Language Open-Ended Questions Through MFACT.- Inferring Users
Information Context from User Profiles and Concept Hierarchies.- Database
Selection for Longer Queries.- VII Contingency Tables and Missing Data.- An
Overview of Collapsibility.- Generalized Factor Analyses for Contingency
Tables.- A PLS Approach to Multiple Table Analysis.- Simultaneous Rowand
Column Partitioning in Several Contingency Tables.- Missing Data and
Imputation Methods in Partition of Variables.- The Treatment of Missing
Values and its Effect on Classifier Accuracy.- Clustering with Missing
Values: No Imputation Required.