List of Figures |
|
xix | |
List of Tables |
|
xxi | |
Preface for the Second Edition |
|
xxiii | |
Preface for the First Edition |
|
xxvii | |
About the Authors |
|
xxxi | |
1 Introduction to R |
|
1 | (16) |
|
|
1 | (1) |
|
1.2 Steps on Installing R and Updating R Packages |
|
|
2 | (3) |
|
1.2.1 First Step: Install R Base System |
|
|
3 | (1) |
|
1.2.2 Second Step: Installing and Updating R Packages |
|
|
3 | (1) |
|
1.2.3 Steps to Get Help and Documentation |
|
|
4 | (1) |
|
1.3 R for Clinical Trials |
|
|
5 | (2) |
|
1.4 A Simple Simulated Clinical Trial |
|
|
7 | (8) |
|
|
7 | (6) |
|
|
7 | (1) |
|
1.4.1.2 Data Generation and Manipulation |
|
|
8 | (2) |
|
|
10 | (3) |
|
|
13 | (2) |
|
1.5 Summary and Recommendations for Further Reading |
|
|
15 | (1) |
|
1.6 Appendix: SAS Programs |
|
|
15 | (2) |
2 Overview of Clinical Trials |
|
17 | (14) |
|
|
17 | (1) |
|
2.2 Phases of Clinical Trials and Objectives |
|
|
17 | (3) |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
2.3 The Clinical Development Plan |
|
|
20 | (1) |
|
2.4 Biostatistical Aspects of a Protocol |
|
|
20 | (9) |
|
2.4.1 Background or Rationale |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (2) |
|
|
22 | (1) |
|
|
22 | (2) |
|
2.4.3.3 Problem Management |
|
|
24 | (1) |
|
2.4.4 Statistical Analysis Section |
|
|
24 | (3) |
|
2.4.4.1 Study Objectives as Statistical Hypotheses |
|
|
24 | (1) |
|
|
25 | (1) |
|
2.4.4.3 Statistical Methods |
|
|
25 | (1) |
|
2.4.4.4 Statistical Monitoring Procedures |
|
|
26 | (1) |
|
2.4.5 Statistical Design Considerations |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (2) |
3 Treatment Comparisons in Clinical Trials |
|
31 | (32) |
|
3.1 Data from Clinical Trials |
|
|
31 | (3) |
|
3.1.1 Diastolic Blood Pressure |
|
|
31 | (2) |
|
3.1.2 Clinical Trial on Duodenal Ulcer Healing |
|
|
33 | (1) |
|
3.2 Statistical Models for Treatment Comparisons |
|
|
34 | (5) |
|
3.2.1 Models for Continuous Endpoints |
|
|
34 | (4) |
|
3.2.1.1 Student's t-Tests |
|
|
34 | (2) |
|
3.2.1.2 One-Way Analysis of Variance (ANO\A) |
|
|
36 | (1) |
|
3.2.1.3 Multi-Way ANOVA: Factorial Design |
|
|
37 | (1) |
|
3.2.1.4 Multivariate Analysis of Variance (MANOVA) |
|
|
38 | (1) |
|
3.2.2 Models for Categorical Endpoints: Pearson's x2-test |
|
|
38 | (1) |
|
|
39 | (17) |
|
3.3.1 Analysis of the DBP Trial |
|
|
39 | (13) |
|
3.3.1.1 Preliminary Data analysis |
|
|
39 | (1) |
|
|
40 | (3) |
|
3.3.1.3 Bootstrapping Method |
|
|
43 | (1) |
|
3.3.1.4 One-Way ANOVA for Time Changes |
|
|
44 | (3) |
|
3.3.1.5 Two-Way ANOVA for Interaction |
|
|
47 | (4) |
|
3.3.1.6 MANOVA for Treatment Difference |
|
|
51 | (1) |
|
3.3.2 Analysis of Duodenal Ulcer Healing Trial |
|
|
52 | (11) |
|
3.3.2.1 Using Pearson's x2-test |
|
|
52 | (2) |
|
3.3.2.2 Using Contingency Table |
|
|
54 | (2) |
|
3.4 Summary and Conclusions |
|
|
56 | (1) |
|
3.5 Appendix: SAS Programs |
|
|
57 | (6) |
4 Treatment Comparisons in Clinical Trials with Covariates |
|
63 | (32) |
|
4.1 Data from Clinical Trials |
|
|
63 | (2) |
|
4.1.1 Diastolic Blood Pressure |
|
|
63 | (1) |
|
4.1.2 Clinical Trials for Betablockers |
|
|
64 | (1) |
|
4.1.3 Clinical Trial on Familial Adenomatous Polyposis |
|
|
64 | (1) |
|
4.2 Statistical Models Incorporating Covariates |
|
|
65 | (8) |
|
4.2.1 ANCOVA Models for Continuous Endpoints |
|
|
65 | (3) |
|
4.2.2 Logistic Regression for Binary/Binomial Endpoints |
|
|
68 | (2) |
|
4.2.3 Poisson Regression for Clinical Endpoint with Counts |
|
|
70 | (1) |
|
|
70 | (3) |
|
|
73 | (17) |
|
4.3.1 Analysis of DBP Trial |
|
|
73 | (7) |
|
4.3.1.1 Analysis of Baseline Data |
|
|
73 | (3) |
|
4.3.1.2 ANCOVA of DBP Change from Baseline |
|
|
76 | (3) |
|
4.3.1.3 MANCOVA for DBP Change from Baseline |
|
|
79 | (1) |
|
4.3.2 Analysis of Betablocker Trial |
|
|
80 | (6) |
|
4.3.3 Analysis of Data from Familial Adenomatous Polyposis Trial |
|
|
86 | (4) |
|
4.4 Summary and Conclusions |
|
|
90 | (1) |
|
4.5 Appendix: SAS Programs |
|
|
91 | (4) |
5 Analysis of Clinical Trials with Time-to-Event Endpoints |
|
95 | (38) |
|
5.1 Clinical Trials with Time-to-Event Data |
|
|
96 | (2) |
|
5.1.1 Phase II Trial of Patients with Stage-2 Breast Carcinoma |
|
|
96 | (1) |
|
5.1.2 Breast Cancer Trial with Interval-Censored Data |
|
|
97 | (1) |
|
|
98 | (3) |
|
5.2.1 Primary Functions and Definitions |
|
|
98 | (2) |
|
5.2.1.1 The Hazard Function |
|
|
98 | (1) |
|
5.2.1.2 The Survival Function |
|
|
99 | (1) |
|
5.2.1.3 The Death Density Function |
|
|
99 | (1) |
|
5.2.1.4 Relationships between These Functions |
|
|
100 | (1) |
|
|
100 | (1) |
|
5.2.2.1 The Exponential Model |
|
|
100 | (1) |
|
5.2.2.2 The Weibull Model |
|
|
100 | (1) |
|
5.2.2.3 The Rayleigh Model |
|
|
101 | (1) |
|
5.2.2.4 The Gompertz Model |
|
|
101 | (1) |
|
5.2.2.5 The Lognormal Model |
|
|
101 | (1) |
|
5.3 Statistical Methods for Right-Censored Data |
|
|
101 | (3) |
|
5.3.1 Nonparametric Models: Kaplan-Meier Estimator |
|
|
101 | (1) |
|
5.3.2 Cox Proportion Hazards Regression |
|
|
102 | (2) |
|
5.4 Statistical Methods for Interval-Censored Data |
|
|
104 | (4) |
|
5.4.1 Turnbull's Nonparametric Estimator |
|
|
105 | (2) |
|
5.4.2 Parametric Likelihood Estimation with Covariates |
|
|
s106 | |
|
5.4.3 Semiparametric Estimation: the IntCox |
|
|
107 | (1) |
|
5.5 Step-by-Step Implementations in R |
|
|
108 | (21) |
|
5.5.1 Stage-2 Breast Carcinoma |
|
|
108 | (8) |
|
|
108 | (4) |
|
5.5.1.2 Fit Weibull Parametric Model |
|
|
112 | (2) |
|
5.5.1.3 Fit Cox Regression Model |
|
|
114 | (2) |
|
5.5.2 Breast Cancer with Interval-Censored Data |
|
|
116 | (17) |
|
5.5.2.1 Fit Turnbull's Nonparametric Estimator |
|
|
116 | (6) |
|
5.5.2.2 Fit Turnbull's Nonparametric Estimator Using R Package interval |
|
|
122 | (1) |
|
5.5.2.3 Fitting Parametric Models |
|
|
123 | (2) |
|
5.5.2.4 Testing Treatment Effect Using Semiparametric Estimation: IntCox |
|
|
125 | (3) |
|
5.5.2.5 Testing Treatment Effect Using Semiparametric Estimation: ictest |
|
|
128 | (1) |
|
5.6 Summary and Discussions |
|
|
129 | (1) |
|
5.7 Appendix: SAS Programs |
|
|
129 | (4) |
6 Longitudinal Data Analysis for Clinical Trials |
|
133 | (32) |
|
|
133 | (2) |
|
6.1.1 Diastolic Blood Pressure Data |
|
|
133 | (1) |
|
6.1.2 Clinical Trial on Duodenal Ulcer Healing |
|
|
134 | (1) |
|
|
135 | (3) |
|
6.2.1 Linear Mixed Models |
|
|
135 | (2) |
|
6.2.2 Generalized Linear Mixed Models |
|
|
137 | (1) |
|
6.2.3 Generalized Estimating Equation |
|
|
138 | (1) |
|
6.3 Longitudinal Data Analysis for Clinical Trials |
|
|
138 | (21) |
|
6.3.1 Analysis of Diastolic Blood Pressure Data |
|
|
138 | (14) |
|
6.3.1.1 Data Graphics and Response Feature Analysis |
|
|
139 | (7) |
|
6.3.1.2 Longitudinal Modeling |
|
|
146 | (6) |
|
6.3.2 Analysis of Cimetidine Duodenal Ulcer Trial |
|
|
152 | (15) |
|
6.3.2.1 Preliminary Analysis |
|
|
152 | (1) |
|
6.3.2.2 Fit Logistic Regression to Binomial Data |
|
|
152 | (3) |
|
6.3.2.3 Fit Generalized Linear Mixed Model |
|
|
155 | (2) |
|
|
157 | (2) |
|
6.4 Summary and Discussion |
|
|
159 | (1) |
|
6.5 Appendix: SAS Programs |
|
|
160 | (5) |
7 Sample Size Determination and Power Calculations in Clinical Trials |
|
165 | (50) |
|
7.1 Pre-requisites for Sample Size Determination |
|
|
165 | (2) |
|
7.2 Comparison of Two Treatment Groups with Continuous Endpoints |
|
|
167 | (9) |
|
|
167 | (2) |
|
7.2.2 Basic Formula for Sample Size Calculation |
|
|
169 | (1) |
|
7.2.3 R Function power.t. test |
|
|
170 | (3) |
|
7.2.4 Unequal Variance: samplesize Package |
|
|
173 | (3) |
|
7.3 Two Binomial Proportions |
|
|
176 | (10) |
|
7.3.1 R Function power.prop.test |
|
|
176 | (3) |
|
|
179 | (3) |
|
7.3.3 R Function nBinomial in gsDesign library |
|
|
182 | (4) |
|
7.4 Time-to-Event Endpoint |
|
|
186 | (4) |
|
7.5 Design of Group Sequential Trials |
|
|
190 | (7) |
|
|
190 | (1) |
|
|
191 | (6) |
|
|
197 | (8) |
|
7.6.1 Longitudinal Trial with Continuous Endpoint |
|
|
197 | (6) |
|
7.6.1.1 The Model Setting |
|
|
197 | (1) |
|
7.6.1.2 Sample Size Calculations |
|
|
198 | (1) |
|
7.6.1.3 Power Calculation |
|
|
199 | (1) |
|
7.6.1.4 Example and. R. Illustration |
|
|
199 | (4) |
|
7.6.2 Longitudinal Binary Endpoint |
|
|
203 | (2) |
|
7.6.2.1 Approximate Sample Size Calculation |
|
|
203 | (1) |
|
7.6.2.2 Example and R Implementation |
|
|
204 | (1) |
|
7.7 Relative Changes and Coefficient of Variation |
|
|
205 | (3) |
|
|
205 | (1) |
|
7.7.2 Sample Size Calculation Formula |
|
|
205 | (1) |
|
7.7.3 Example and R Implementation |
|
|
206 | (2) |
|
|
208 | (1) |
|
7.9 Appendix: SAS Programs |
|
|
208 | (7) |
8 Meta-Analysis of Clinical Trials |
|
215 | (26) |
|
8.1 Data from Clinical Trials |
|
|
216 | (1) |
|
8.1.1 Clinical Trials for Betablockers: Binary Data |
|
|
216 | (1) |
|
8.1.2 Data for Cochrane Collaboration Logo: Binary Data |
|
|
216 | (1) |
|
8.1.3 Clinical Trials on Amlodipine: Continuous Data |
|
|
217 | (1) |
|
8.2 Statistical Models for Meta-Analysis |
|
|
217 | (6) |
|
8.2.1 Clinical Hypotheses and Effect Size |
|
|
218 | (1) |
|
8.2.2 Fixed-Effects Meta-Analysis Model: The Weighted Average |
|
|
219 | (2) |
|
8.2.3 Random-Effects Meta-Analysis Model: DerSimonian-Laird |
|
|
221 | (2) |
|
|
223 | (1) |
|
|
223 | (13) |
|
8.3.1 Analysis of Betablocker Trials |
|
|
223 | (7) |
|
8.3.1.1 Fitting the Fixed-Effects Model |
|
|
224 | (3) |
|
8.3.1.2 Fitting the Random-Effects Model |
|
|
227 | (3) |
|
8.3.2 Meta-Analysis for Cochrane Collaboration Logo |
|
|
230 | (2) |
|
8.3.3 Analysis of Amlodipine Trial Data |
|
|
232 | (9) |
|
8.3.3.1 Load the Library and Data |
|
|
232 | (1) |
|
8.3.3.2 Fit the Fixed-Effects Model |
|
|
232 | (3) |
|
8.3.3.3 Fit the Random-Effects Model |
|
|
235 | (1) |
|
8.4 Summary and Conclusions |
|
|
236 | (1) |
|
8.5 Appendix: SAS Programs |
|
|
237 | (4) |
9 Bayesian Methods in Clinical Trials |
|
241 | (36) |
|
|
241 | (8) |
|
|
241 | (2) |
|
9.1.2 Posterior Distributions for Some Standard Distributions |
|
|
243 | (2) |
|
9.1.2.1 Normal Distribution with Known Variance |
|
|
243 | (1) |
|
9.1.2.2 Normal Distribution with Unknown Variance |
|
|
244 | (1) |
|
9.1.2.3 Normal Regression |
|
|
244 | (1) |
|
9.1.2.4 Binomial Distribution |
|
|
245 | (1) |
|
9.1.2.5 Multinomial Distribution |
|
|
245 | (1) |
|
9.1.3 Simulation from the Posterior Distribution |
|
|
245 | (4) |
|
9.1.3.1 Direct Simulation |
|
|
246 | (1) |
|
9.1.3.2 Importance Sampling |
|
|
247 | (1) |
|
|
247 | (1) |
|
9.1.3.4 Metropolis-Hastings Algorithm |
|
|
248 | (1) |
|
9.2 R Packages in Bayesian Modeling |
|
|
249 | (4) |
|
|
249 | (1) |
|
9.2.2 R Packages using WinBUGS |
|
|
250 | (2) |
|
|
250 | (1) |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
253 | (6) |
|
9.3.1 Normal-Normal Model |
|
|
253 | (2) |
|
9.3.2 Beta-Binomial Model |
|
|
255 | (4) |
|
9.4 Bayesian Data Analysis |
|
|
259 | (12) |
|
9.4.1 Blood Pressure Data: Bayesian Linear Regression |
|
|
259 | (2) |
|
9.4.2 Binomial Data: Bayesian Logistic Regression |
|
|
261 | (5) |
|
9.4.3 Count Data: Bayesian Poisson Regression |
|
|
266 | (1) |
|
9.4.4 Comparing Two Treatments |
|
|
267 | (4) |
|
9.5 Summary and Discussion |
|
|
271 | (1) |
|
9.6 Appendix: SAS Programs |
|
|
271 | (6) |
10 Bioequivalence Clinical Trials |
|
277 | (38) |
|
10.1 Data from Bioequivalence Clinical Trials |
|
|
277 | (2) |
|
10.1.1 Data from Chow and Liu (2009) |
|
|
277 | (1) |
|
10.1.2 Bioequivalence Trial on Cimetidine Tablets |
|
|
277 | (2) |
|
10.2 Bioequivalence Clinical Trial Endpoints |
|
|
279 | (2) |
|
10.3 Statistical Methods to Analyze Bioequivalence |
|
|
281 | (5) |
|
10.3.1 Decision CIs for Bioequivalence |
|
|
282 | (1) |
|
10.3.2 The Classical Asymmetric Confidence Interval |
|
|
283 | (1) |
|
10.3.3 Westlake's Symmetric Confidence Interval |
|
|
283 | (1) |
|
10.3.4 Two One-Sided Tests |
|
|
284 | (1) |
|
10.3.5 Bayesian Approaches |
|
|
284 | (1) |
|
10.3.6 Individual-Based Bienayme-Tchebycheff (BT) Inequality CI |
|
|
285 | (1) |
|
10.3.7 Individual-Based Bootstrap CIs |
|
|
286 | (1) |
|
10.4 Step-by-Step Implementation in R |
|
|
286 | (28) |
|
10.4.1 Analyze the data from Chow and Liu (2009) |
|
|
286 | (13) |
|
10.4.1.1 Load the data into R |
|
|
286 | (2) |
|
10.4.1.2 Tests for Carryover Effect |
|
|
288 | (2) |
|
10.4.1.3 Test for Direct Formulation Effect |
|
|
290 | (2) |
|
10.4.1.4 Analysis of Variance |
|
|
292 | (1) |
|
|
293 | (1) |
|
10.4.1.6 Classical Shortest 90% CI |
|
|
293 | (1) |
|
|
294 | (1) |
|
10.4.1.8 Two One-Sided Tests |
|
|
295 | (1) |
|
10.4.1.9 Bayesian Approach |
|
|
295 | (1) |
|
10.4.1.10 Individual-Based BT CI |
|
|
295 | (1) |
|
|
296 | (3) |
|
10.4.2 Analyze the data from Cimetidine Trial |
|
|
299 | (18) |
|
10.4.2.1 Clinical Trial Endpoints Calculations |
|
|
299 | (5) |
|
10.4.2.2 ANOVA: Tests for Carryover and Other Effects |
|
|
304 | (4) |
|
|
308 | (1) |
|
10.4.2.4 Classical Shortest 90% CI |
|
|
308 | (1) |
|
|
309 | (1) |
|
10.4.2.6 Two One-Sided CIs |
|
|
309 | (1) |
|
10.4.2.7 Bayesian Approach |
|
|
310 | (1) |
|
10.4.2.8 Individual-Based BT CI |
|
|
310 | (1) |
|
|
311 | (3) |
|
10.5 Summary and Conclusions |
|
|
314 | (1) |
|
10.6 Appendix: SAS Program |
|
|
314 | (1) |
11 Adverse Events in Clinical Trials |
|
315 | (22) |
|
11.1 Adverse Event Data from a Clinical Trial |
|
|
315 | (2) |
|
|
317 | (4) |
|
11.2.1 Confidence Interval (CI) Methods |
|
|
318 | (1) |
|
11.2.1.1 Comparison Using Direct CI Method |
|
|
318 | (1) |
|
11.2.1.2 Comparison Using Indirect CI Methods |
|
|
318 | (1) |
|
11.2.2 Significance Level Methods (SLMs) |
|
|
319 | (2) |
|
11.2.2.1 SLM using normal approximation |
|
|
319 | (1) |
|
11.2.2.2 SLM using exact binomial distribution |
|
|
320 | (1) |
|
11.2.2.3 SLM using resampling from pooled samples |
|
|
320 | (1) |
|
11.2.2.4 SLM using resampling from pooled AE rates |
|
|
321 | (1) |
|
11.3 Step-by-Step Implementation in R |
|
|
321 | (12) |
|
11.3.1 Clinical Trial Data Manipulation |
|
|
321 | (1) |
|
11.3.2 R Implementations for CI Methods |
|
|
322 | (1) |
|
11.3.3 R Implementations for Indirect CI Methods |
|
|
323 | (4) |
|
11.3.4 R for Significant Level Methods |
|
|
327 | (10) |
|
11.3.4.1 R for SLM with normal approximation |
|
|
327 | (1) |
|
11.3.4.2 R for SLM with exact binomial |
|
|
328 | (2) |
|
11.3.4.3 R for SLM using Sampling-Resampling |
|
|
330 | (3) |
|
11.4 Summary and Discussions |
|
|
333 | (1) |
|
11.5 Appendix: SAS Programs |
|
|
334 | (3) |
12 Analysis of DNA Microarrays in Clinical Trials |
|
337 | (26) |
|
|
337 | (3) |
|
|
337 | (1) |
|
12.1.2 DNA, RNA, and Genes |
|
|
338 | (1) |
|
12.1.3 Central Dogma of Molecular Biology |
|
|
338 | (1) |
|
12.1.4 Probes, Probesets, Mismatch, and Perfectmatch |
|
|
339 | (1) |
|
12.1.5 Microarray and Statistical Analysis |
|
|
340 | (1) |
|
12.1.6 Software: R/Biocenductor |
|
|
340 | (1) |
|
|
340 | (21) |
|
|
341 | (2) |
|
12.2.2 Low-Level Data Analysis |
|
|
343 | (9) |
|
|
343 | (1) |
|
|
344 | (3) |
|
|
347 | (2) |
|
12.2.2.4 Background, Normalization, and Summarization |
|
|
349 | (3) |
|
12.2.3 High-Level Analysis |
|
|
352 | (9) |
|
12.2.3.1 Statistical t-test |
|
|
354 | (1) |
|
|
355 | (5) |
|
12.2.3.3 Number of Significantly Expressed Genes |
|
|
360 | (1) |
|
12.2.4 Functional Analysis of Gene Lists |
|
|
361 | (1) |
|
|
361 | (1) |
|
12.4 Appendix: SAS Programs |
|
|
362 | (1) |
Bibliography |
|
363 | (10) |
Index |
|
373 | |