Muutke küpsiste eelistusi

E-raamat: Cloud-Based Benchmarking of Medical Image Analysis

Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-May-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319496443
  • Formaat - PDF+DRM
  • Hind: 4,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-May-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319496443

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is open access under a CC BY-NC 2.5 license. This book presents the VISCERAL project benchmarks for analysis and retrieval of 3D medical images (CT and MRI) on a large scale, which used an innovative cloud-based evaluation approach where the image data were stored centrally on a cloud infrastructure and participants placed their programs in virtual machines on the cloud. The book presents the points of view of both the organizers of the VISCERAL benchmarks and the participants.  The book is divided into five parts. Part I presents the cloud-based benchmarking and Evaluation-as-a-Service paradigm that the VISCERAL benchmarks used. Part II focuses on the datasets of medical images annotated with ground truth created in VISCERAL that continue to be available for research. It also covers the practical aspects of obtaining permission to use medical data and manually annotating 3D medical images efficiently and effectively. The VISCERAL benchmarks are described in Part III

, including a presentation and analysis of metrics used in evaluation of medical image analysis and search. Lastly, Parts IV and V present reports by some of the participants in the VISCERAL benchmarks, with Part IV devoted to the anatomy benchmarks and Part V to the retrieval benchmark. This book has two main audiences: the datasets as well as the segmentation and retrieval results are of most interest to medical imaging researchers, while eScience and computational science experts benefit from the insights into using the Evaluation-as-a-Service paradigm for evaluation and benchmarking on huge amounts of data.

VISCERAL: Evaluation-as-a-Service for Medical Imaging.- Using the Cloud as a Platform for Evaluation and Data Preparation.- Ethical and Privacy Aspects of Using Medical Image Data.- Annotating Medical Image Data.- Datasets created in VISCERAL.- Evaluation Metrics for Medical Organ Segmentation and Lesion Detection.- VISCERAL Anatomy Benchmarks for Organ Segmentation and Landmark Localisation: Tasks and Results.- Retrieval of Medical Cases for Diagnostic Decisions: VISCERAL Retrieval Benchmark.- Automatic Atlas-Free Multi-Organ Segmentation of Contrast-Enhanced CT Scans.- Multi-organ Segmentation Using Coherent Propagating Level Set Method Guided by Hierarchical Shape Priors and Local Phase Information.- Automatic Multi-organ Segmentation using Hierarchically-Registered Probabilistic Atlases.- Multi-Atlas Segmentation Using Robust Feature-Based Registration.- Combining Radiology Images and Clinical Meta-data for Multimodal Medical Case-based Retrieval.- Text and Content-based Medic

al Image Retrieval in the VISCERAL Retrieval Benchmark.

Muu info

This is an open access book, the electronic versions are freely accessible online.
Part I Evaluation-as-a-Service
1 Visceral: Evaluation-as-a-Service for Medical Imaging
3(12)
Allan Hanbury
Henning Muller
2 Using the Cloud as a Platform for Evaluation and Data Preparation
15(18)
Ivan Eggel
Roger Schaer
Henning Muller
Part II Visceral Datasets
3 Ethical and Privacy Aspects of Using Medical Image Data
33(12)
Katharina Grunberg
Andras Jakab
Georg Langs
Tomas Salas Fernandez
Marianne Winterstein
Marc-Andre Weber
Markus Krenn
Oscar Jimenez-del-Toro
4 Annotating Medical Image Data
45(24)
Katharina Grunberg
Oscar Jimenez-del-Toro
Andras Jakab
Georg Langs
Tomas Salas Fernandez
Marianne Winterstein
Marc-Andre Weber
Markus Krenn
5 Datasets Created in Visceral
69(18)
Markus Krenn
Katharina Grunberg
Oscar Jimenez-del-Toro
Andras Jakab
Tomas Salas Fernandez
Marianne Winterstein
Marc-Andre Weber
Georg Langs
Part III Visceral Benchmarks
6 Evaluation Metrics for Medical Organ Segmentation and Lesion Detection
87(20)
Abdel Aziz Taha
Allan Hanbury
7 Visceral Anatomy Benchmarks for Organ Segmentation and Landmark Localization: Tasks and Results
107(20)
Orcun Goksel
Antonio Foncubierta-Rodriguez
8 Retrieval of Medical Case's for Diagnostic Decisions: Visceral Retrieval Benchmark
127(18)
Oscar Jimenez-del-Toro
Henning Muller
Antonio Foncubierta-Rodriguez
Georg Langs
Allan Hanbury
Part IV Visceral Anatomy Participant Reports
9 Automatic Atlas-Free Multiorgan Segmentation of Contrast-Enhanced CT Scans
145(20)
Assaf B. Spanier
Leo Joskowicz
10 Multiorgan Segmentation Using Coherent Propagating Level Set Method Guided by Hierarchical Shape Priors and Local Phase Information
165(20)
Chunliang Wang
Orjan Smedby
11 Automatic Multiorgan Segmentation Using Hierarchically Registered Probabilistic Atlases
185(18)
Razmig Kechichian
Sebastien Valette
Michel Desvignes
12 Multiatlas Segmentation Using Robust Feature-Based Registration
203(18)
Frida Fejne
Matilda Landgren
Jennifer Alven
Johannes Ulen
Johan Fredriksson
Viktor Larsson
Olof Enqvist
Fredrik Kahl
Part V Visceral Retrieval Participant Reports
13 Combining Radiology Images and Clinical Metadata for Multimodal Medical Case - Based Retrieval
221(16)
Oscar Jimenez-del-Toro
Pol Cirujeda
Henning Muller
14 Text- and Content-Based Medical Image Retrieval in the Visceral Retrieval Benchmark
237(14)
Fan Zhang
Yang Song
Weidong Cai
Adrien Depeursinge
Henning Muller
Index 251
Allan Hanbury is Senior Researcher at the TU Wien, Austria, and was the coordinator of the EU-funded VISCERAL project on evaluation of algorithms on big data. His research interests include data science, information retrieval, multimodal information retrieval, and the evaluation of information retrieval systems and algorithms.

Henning Müller is professor in computer sciences at the HES-SO, Sierre, Switzerland and in medicine at the University of Geneva, Switzerland. His research focuses on medical information retrieval, the organization of data science challenges and multimodal data analysis for big data and the underlying computing infrastructures.

Georg Langs is the Head of the Computational Imaging Research Lab (CIR) at the Medical University of Vienna, Austria, and is also affiliated with the Medical Vision Group at CSAIL, Massachusetts Institute of Technology, USA. His main research interests are in neuroimaging, machine learning and medical image analysis.