Muutke küpsiste eelistusi

E-raamat: Clusters in Nuclei, Vol.2

Edited by
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 848
  • Ilmumisaeg: 15-Feb-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642247071
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 848
  • Ilmumisaeg: 15-Feb-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642247071
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

By vigorously promoting new ideas and developments while retaining a pedagogical style of presentation, this book offers both a reference and an advanced teaching manual in the fields of nuclear physics and nuclear astrophysics, for future courses and schools.

Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This second volume follows the successful Lect. Notes Phys. 818 (Vol.1), and comprises six extensive lectures covering the following topics:         Microscopic cluster models        Neutron halo and break-up reactions        Break-up reaction models for two- and three-cluster projectiles        Clustering effects within the di-nuclear model        Nuclear alpha-particle condensates        Clusters in nuclei: experimental perspectives By promoting new ideas and developments while retaining a pedagogical style of presentation throughout, these lectures will serve as both a reference and an advanced teaching manual for future courses and schools in the fields of nuclear physics and nuclear astrophysics.
1 Microscopic Cluster Models
1(66)
1.1 Introduction
1(4)
1.2 Choice of the Nucleon-Nucleon Interaction
5(2)
1.3 The Resonating Group Method
7(4)
1.3.1 The RGM Equation
7(3)
1.3.2 Example: Overlap Kernel of the α + n System
10(1)
1.4 The Generator Coordinate Method
11(6)
1.4.1 Introduction
11(1)
1.4.2 Slater Determinants and GCM Basis Functions
12(3)
1.4.3 Equivalence Between RGM and GCM
15(1)
1.4.4 Two-Cluster Angular-Momentum Projection
16(1)
1.5 Matrix Elements Between Slater Determinants
17(11)
1.5.1 General Presentation
17(3)
1.5.2 Spin and Isospin Factorization
20(2)
1.5.3 The Spin-Orbit Interaction
22(1)
1.5.4 Matrix Elements Between Individual Orbitals
22(1)
1.5.5 Example: α + n Overlap Kernel
23(2)
1.5.6 GCM Kernels of α + N Systems
25(3)
1.6 Approximations of the RGM
28(4)
1.6.1 Eigenvalues of the Overlap Kernel
28(2)
1.6.2 Reformulation of the RGM Equation
30(1)
1.6.3 The Orthogonality Condition Model
31(1)
1.7 Recent Developments of the GCM
32(15)
1.7.1 Introduction
32(1)
1.7.2 Internal Wave Functions
32(5)
1.7.3 Multicluster Angular-Momentum Projection
37(1)
1.7.4 Multichannel Two-Cluster Systems
38(3)
1.7.5 Multicluster Models
41(6)
1.8 Scattering States With the GCM
47(4)
1.8.1 Introduction
47(1)
1.8.2 Cross Sections
48(1)
1.8.3 The Microscopic R-matrix Method
49(2)
1.9 Applications of the GCM
51(10)
1.9.1 The 2x + 3x Systems
51(4)
1.9.2 Other Applications of the Multicluster Model
55(2)
1.9.3 Multichannel Study of the 17F(p, 7)18Ne Reaction
57(3)
1.9.4 12Be as an Example of a Light Exotic Nucleus
60(1)
1.10 Conclusions
61(6)
References
62(5)
2 Neutron Halo and Breakup Reactions
67(54)
2.1 Introduction
68(3)
2.2 Coulomb Breakup at Intermediate/High Energies
71(3)
2.3 Coulomb Breakup and Soft E1 Excitation of 1n Halo Nuclei
74(22)
2.3.1 Coulomb Breakup of 11Be and Characteristic Feature of Soft E1 Excitation of One-Neutron Halo Nuclei
74(8)
2.3.2 Spectroscopy Using Coulomb Breakup of 1n Halo Nuclei - Application to 19C
82(5)
2.3.3 Application to the Radiative Capture Reaction 14C(n, y)15C of Astrophysical Interest
87(4)
2.3.4 Inclusive Coulomb Breakup of 31Ne
91(5)
2.4 Coulomb Breakup and Soft E1 Excitation of 2n Halo Nuclei
96(5)
2.4.1 Exclusive Coulomb Breakup of 11Li
97(4)
2.5 Spectroscopy of Unbound States via the Nuclear Breakup
101(13)
2.5.1 Inelastic Scattering of 14Be
103(2)
2.5.2 Breakup of 14Be With a Proton Target and Spectroscopy of 13Be
105(9)
2.6 Concluding Remarks
114(7)
References
116(5)
3 Breakup Reaction Models for Two- and Three-Cluster Projectiles
121(44)
3.1 Introduction
122(1)
3.2 Projectile and Reaction Models
123(2)
3.3 Semiclassical Approximation
125(6)
3.3.1 Time-Dependent Schrodinger Equation
125(1)
3.3.2 Cross Sections
126(1)
3.3.3 Resolution at the First Order of the Perturbation Theory
127(2)
3.3.4 Numerical Resolution
129(2)
3.4 Eikonal Approximations
131(7)
3.4.1 Dynamical Eikonal Approximation
131(1)
3.4.2 Cross Sections
131(2)
3.4.3 Standard Eikonal Approximation
133(2)
3.4.4 Coulomb-Corrected Eikonal Approximation
135(3)
3.5 Continuum-Discretized Coupled-Channel Method
138(4)
3.6 Breakup Reactions of Two-Body Projectiles
142(6)
3.6.1 Two-Cluster Model
142(2)
3.6.2 Two-Body Breakup of Exotic Nuclei
144(2)
3.6.3 Application to Nuclear Astrophysics
146(2)
3.7 Breakup Reactions of Three-Body Projectiles
148(10)
3.7.1 Three-Cluster Model of Projectile
148(5)
3.7.2 Dipole Strength Distribution
153(1)
3.7.3 The CCE Approximation for Three-Body Projectiles
154(2)
3.7.4 The CDCC Approximation for Three-Body Projectiles
156(2)
3.8 Perspectives
158(7)
References
160(5)
4 Clustering Effects Within the Dinuclear Model
165(64)
4.1 Introduction
166(1)
4.2 Adiabatic or Diabatic Potentials Between Nuclei
166(9)
4.2.1 Two-Center Shell Model
167(1)
4.2.2 Calculation of Adiabatic and Diabatic Potentials
168(2)
4.2.3 The Motion of the Neck
170(3)
4.2.4 Repulsive Potentials by the Quantization of Kinetic Energy
173(2)
4.3 Nuclear Molecules, Hyperdeformed Nuclear Structures
175(5)
4.3.1 Hyperdeformed States Directly Formed in the Scattering of 48Ca + 140 Ce and 90Zr + 90 Zr
176(2)
4.3.2 Hyperdeformed States Formed by Neutron Emission from the Dinuclear System
178(2)
4.4 Normal Deformed and Superdeformed Nuclei
180(9)
4.4.1 Internuclear Potential, Moments of Inertia, Quadrupole and Octupole Moments of the Dinuclear Shape
180(1)
4.4.2 Parity Splitting in Heavy Nuclei
181(4)
4.4.3 Cluster Effects in the Ground State and Superdeformed Bands of 60Zn
185(2)
4.4.4 Decay Out Phenomenon of Superdeformed Bands in the Mass Region A 190
187(2)
4.5 Complete Fusion and Quasifission in the Dinuclear Model
189(23)
4.5.1 Reaction Models for Fusion With Adiabatic and Diabatic Potentials
189(1)
4.5.2 Problems of Adiabatic Treatment of Fusion
190(2)
4.5.3 Fusion to Superheavy Nuclei
192(12)
4.5.4 Production of Neutron-Deficient Isotopes of Pu
204(1)
4.5.5 Master Equations for Nucleon Transfer
205(4)
4.5.6 Results for Quasifission
209(3)
4.6 Multinucleon Transfer Reactions
212(4)
4.6.1 Production of Heaviest Nuclei in Transfer Reactions
212(2)
4.6.2 Transfer Products in Cold Fusion Reactions
214(1)
4.6.3 Production of Neutron-Rich Isotopes in Transfer Reactions
215(1)
4.7 Binary and Ternary Fission in the Scission-Point Model
216(7)
4.7.1 Fission Potential With the Dinuclear System Model
217(3)
4.7.2 Binary Fission
220(2)
4.7.3 Ternary Fission
222(1)
4.8 Selected Summarizing and Concluding Remarks
223(6)
References
224(5)
5 Nuclear Alpha-Particle Condensates
229(70)
5.1 Introduction
230(3)
5.2 Formulation of Alpha-Condensation: THSR Wave Function and OCM Approach
233(6)
5.2.1 Resonating Group Method (RGM)
233(1)
5.2.2 THSR Wave Function
234(2)
5.2.3 nα Boson Wave Function and OCM
236(2)
5.2.4 Single α-Particle Density Matrix and Occupation Probabilities
238(1)
5.3 THSR Wave Function versus Brink Wave Function for 8Be
239(4)
5.4 Alpha-Gas Like States in Light Nuclei
243(28)
5.4.1 12C Case
243(12)
5.4.2 16O Case
255(9)
5.4.3 Heavier 4n Nuclei: Gross-Pitaevskii Equation
264(3)
5.4.4 Hoyle-Analogue States in Non-4n Nuclei: 11B and 13C
267(4)
5.5 Clusters in Nuclear Matter and α-Particle Condensation
271(21)
5.5.1 Nuclear Clusters in the Medium
271(2)
5.5.2 Four-Particle Condensates and Quartetting in Nuclear Matter
273(9)
5.5.3 Reduction of the α-Condensate with Increasing Density
282(4)
5.5.4 `Gap' Equation for Quartet Order Parameter
286(6)
5.6 Summary and Conclusions
292(7)
References
294(5)
6 Cluster in Nuclei: Experimental Perspectives
299
6.1 Introduction
300(1)
6.2 Population of Cluster States
300(12)
6.2.1 Radioactive Decay
300(6)
6.2.2 In-Beam Induced Reactions
306(6)
6.3 Targetry
312(9)
6.3.1 Gas Targets
313(2)
6.3.2 Solid Hydrogen Targets
315(3)
6.3.3 Active Targets
318(3)
6.4 Detection Techniques
321(23)
6.4.1 Gamma-Ray Spectroscopy
321(3)
6.4.2 Charged Particle Detectors
324(9)
6.4.3 Neutron Detection
333(1)
6.4.4 Mass Spectrometers, Mass Separators and Combined Setup
334(3)
6.4.5 Particle Identification
337(5)
6.4.6 Electronics and Data AcQuisition (DAQ) Systems
342(2)
6.5 Kinematics
344(4)
6.5.1 Complete Kinematics
344(1)
6.5.2 Particle Reconstruction
345(1)
6.5.3 Total Final State Kinetic Energy (TKE)
346(1)
6.5.4 Dalitz Plots
347(1)
6.6 Computer Codes
348(2)
6.7 Concluding Remarks
350
References
350