Muutke küpsiste eelistusi

E-raamat: CMOS Continuous-Time Adaptive Equalizers for High-Speed Serial Links

  • Formaat - PDF+DRM
  • Hind: 104,36 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces readers to the design of adaptive equalization solutions integrated in standard CMOS technology for high-speed serial links. Since continuous-time equalizers offer various advantages as an alternative to discrete-time equalizers at multi-gigabit rates, this book provides a detailed description of continuous-time adaptive equalizers design - both at  transistor and system levels-, their main characteristics and performances. The authors begin with a complete review and analysis of the state of the art of equalizers for wireline applications, describing why they are necessary, their types, and their main applications. Next, theoretical fundamentals of continuous-time adaptive equalizers are explored. Then, new structures are proposed to implement the different building blocks of the adaptive equalizer: line equalizer, loop-filters, power comparator, etc.  The authors demonstrate the design of a complete low-power, low-voltage, high-speed, continuous-time adaptive equalizer. Finally, a cost-effective CMOS receiver which includes the proposed continuous-time adaptive equalizer is designed for 1.25 Gb/s optical communications through 50-m length, 1-mm diameter plastic optical fiber (POF).       
1 Introduction
1(30)
1.1 Equalization for High-Speed Serial Links
1(21)
1.1.1 Transmitter Equalization
5(2)
1.1.2 Receiver Equalization
7(5)
1.1.3 Adaptation Criteria and Related Algorithms
12(5)
1.1.4 Equalization for Short-Reach Optical Communications
17(5)
1.2 Objectives
22(1)
1.3 Book Organization
23(8)
References
24(7)
2 Theoretical Study of Continuous-Time Equalizers
31(22)
2.1 Basic Theory
31(2)
2.2 Power Spectral Density of NRZ Data Encoding
33(1)
2.3 Unified Model for CT Equalizers in the Frequency Domain
34(13)
2.3.1 CT Adaptive Equalizer with a Slicer
38(5)
2.3.2 CT Adaptive Equalizer with Spectrum-Balancing Technique
43(4)
2.3.3 Summary
47(1)
2.4 Loop Filter Selection Criteria
47(2)
2.5 Conclusions
49(4)
References
50(3)
3 Continuous-Time Linear Equalizers
53(28)
3.1 Degenerated Differential Pair
54(2)
3.2 Split-Path Equalizer
56(5)
3.3 Comparative Analysis
61(7)
3.4 Experimental Verification
68(9)
3.4.1 Layout Strategies
70(1)
3.4.2 Electrical Set-Up
71(1)
3.4.3 Electrical Characterization
72(5)
3.5 Conclusions
77(4)
References
79(2)
4 Adaptation Loop
81(26)
4.1 Design of the Adaptation Loop
82(16)
4.1.1 Line Equalizer
84(1)
4.1.2 Loop Filters
84(3)
4.1.3 Power Comparator
87(5)
4.1.4 Complete Continuous-Time Adaptive Equalizer
92(6)
4.2 Experimental Measurements
98(5)
4.2.1 Layout
99(1)
4.2.2 Electrical Characterization
99(2)
4.2.3 Time-Domain Characterization
101(2)
4.3 Conclusions
103(4)
References
104(3)
5 Receiver Front-End for 1.25-Gb/s SI-POF
107(28)
5.1 Receiver Front-End Architecture
108(15)
5.1.1 Transimpedance Amplifier
109(4)
5.1.2 Adaptive Equalizer
113(1)
5.1.3 Limiting Amplifier
114(2)
5.1.4 Clock and Data Recovery Circuit
116(7)
5.2 Experimental Verification
123(7)
5.2.1 Optical Characterization
125(5)
5.3 Conclusions
130(5)
References
132(3)
6 Conclusions
135(6)
6.1 General Conclusions
135(3)
6.2 Further Research Directions
138(3)
Appendix A Plastic Optical Fibers 141(4)
Index 145