Muutke küpsiste eelistusi

E-raamat: CMOS Voltage References: An Analytical and Practical Perspective

(Canaan Microelectronics, P.R. China), (Canaan Microelectronics, P.R. China)
  • Formaat: EPUB+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 19-Dec-2012
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118275719
  • Formaat - EPUB+DRM
  • Hind: 135,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 19-Dec-2012
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118275719

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A practical overview of CMOS circuit design, this book covers the technology, analysis, and design techniques of voltage reference circuits.  The design requirements covered follow modern CMOS processes, with an emphasis on low power, low voltage, and low temperature coefficient voltage reference design. Dedicating a chapter to each stage of the design process, the authors have organized the content to give readers the tools they need to implement the technologies themselves. Readers will gain an understanding of device characteristics, the practical considerations behind circuit topology, and potential problems with each type of circuit.  

Many design examples are used throughout, most of which have been tested with silicon implementation or employed in real-world products. This ensures that the material presented relevant to both students studying the topic as well as readers requiring a practical viewpoint.  





Covers CMOS voltage reference circuit design, from the basics through to advanced topics Provides an overview of basic device physics and different building blocks of voltage reference designs Features real-world examples based on actual silicon implementation Includes analytical exercises, simulation exercises, and silicon layout exercises, giving readers guidance and design layout experience for voltage reference circuits Solution manual available to instructors from the books companion website

This book is highly useful for graduate students in VLSI design, as well as practicing analog engineers and IC design professionals. Advanced undergraduates preparing for further study in VLSI will also find this book a helpful companion text.
About the Authors ix
Preface xi
Acknowledgements xiii
Nomenclature xv
1 Warm Up
1(48)
1.1 Bipolar Junction Transistors
2(5)
1.1.1 Differential VBE
5(2)
1.2 Metal-Oxide Semiconductor Field-Effect Transistor
7(16)
1.2.1 Cutoff Region
11(1)
1.2.2 Subthreshold Conduction
11(3)
1.2.3 Triode Region
14(2)
1.2.4 Saturation Region
16(3)
1.2.5 Thermal Properties
19(4)
1.2.6 Channel Length Modulation Effect
23(1)
1.3 Diode
23(2)
1.4 Resistor
25(3)
1.4.1 Dummy Element
27(1)
1.4.2 Guard Ring
27(1)
1.4.3 Sheet Resistance
27(1)
1.5 Device Matching
28(3)
1.5.1 Application of Statistics to Circuit Design
28(2)
1.5.2 Systematic Variation
30(1)
1.6 Simulation Models for Circuit Design
31(5)
1.6.1 Process Variation and Typical Design
32(2)
1.6.2 Process Corners
34(2)
1.7 Noise
36(3)
1.7.1 Types of Noises
36(2)
1.7.2 Sums and Multiplications of Noises
38(1)
1.8 Fabrication Technology
39(1)
1.9 Book Organization
40(2)
1.10 Exercises
42(7)
References
46(3)
2 Voltage Reference
49(22)
2.1 Performance Measures
49(13)
2.1.1 Line Regulation
51(3)
2.1.2 Temperature Coefficient
54(2)
2.1.3 Power Supply Rejection Ratio
56(3)
2.1.4 Quiescent Current
59(1)
2.1.5 Output Noise
60(2)
2.2 Other Design Considerations
62(1)
2.3 Summary
63(2)
2.4 Exercises
65(6)
References
70(1)
3 Bandgap Voltage Reference
71(32)
3.1 Widlar Bandgap Voltage Reference Circuit
71(3)
3.2 Drain Voltage Equalization Current Mirror
74(7)
3.2.1 Opamp Based β-Multiplier Bandgap Voltage Reference Circuit
76(1)
3.2.2 Bandgap Voltage Reference Circuit
77(4)
3.3 Major Circuit Elements
81(14)
3.3.1 Operational Amplifier
81(5)
3.3.2 Current Mirror
86(2)
3.3.3 Startup Circuit
88(5)
3.3.4 Resistor Network
93(1)
3.3.5 Bipolar Transistor
94(1)
3.4 Complete Layout
95(1)
3.5 Summary
95(1)
3.6 Exercises
96(7)
References
101(2)
4 Error Sources in Bandgap Voltage Reference Circuit
103(62)
4.1 Non-Ideal Opamp
103(11)
4.1.1 Input Offset Voltage
104(8)
4.1.2 Limited Gain and Power Supply Rejection Ratio
112(1)
4.1.3 Noise
113(1)
4.2 Current Mirror Mismatch
114(8)
4.2.1 Channel Length Modulation Effect Compensation
116(1)
4.2.2 Cascode Current Mirror
117(5)
4.3 Bipolar Transistor
122(4)
4.3.1 Size Variation
122(1)
4.3.2 Series Base Resistance
122(3)
4.3.3 β Variation
125(1)
4.4 Resistor Variation
126(1)
4.5 Power Supply Variation
127(8)
4.5.1 Pre-Regulation
132(3)
4.6 Output Loading
135(3)
4.7 Output Noise
138(2)
4.8 Voltage Reference Circuit Trimming
140(9)
4.8.1 Linked Fuse Resistor Trimming
141(1)
4.8.2 Resistor Trimming Circuit Analysis
142(4)
4.8.3 Modulated Trimming
146(2)
4.8.4 Voltage Domain Trimming
148(1)
4.8.5 Current Domain Trimming
149(1)
4.9 Summary
149(2)
4.10 Exercises Advanced Voltage Reference Circuits
151(14)
References
161(4)
5 Temperature Compensation Techniques
165(26)
5.1 VBE - Δ VBE Compensation
166(9)
5.1.1 Brokaw Bandgap Voltage Reference
168(2)
5.1.2 β-Multiplier VBE - Δ VBE Compensation
170(5)
5.2 Widlar PTAT Current Source and VBE Compensation
175(2)
5.3 VGS Based Temperature Compensation
177(5)
5.3.1 VGS Current Source
178(4)
5.4 Summary
182(1)
5.5 Exercises
183(8)
References
189(2)
6 Sub-1V Voltage Reference Circuit
191(32)
6.1 Sub-1V Output Stage
193(2)
6.2 Voltage Headroom in Opamp based β-multiplier Voltage Reference Circuit
195(4)
6.2.1 Opamp with NMOS Input Stage
197(1)
6.2.2 Local Voltage Boosting
198(1)
6.2.3 Low Vth Transistor
198(1)
6.2.4 Bulk-Driven Transistors
199(1)
6.3 Sub-1V Bandgap Voltage Reference by Resistive Division
199(10)
6.3.1 Resistive Divided VBE
202(4)
6.3.2 Independent Biased Resistive Divided VBE
206(3)
6.4 Peaking Current Source and VBE Compensation
209(2)
6.5 Weighted Δ VGS Compensation
211(3)
6.6 Summary
214(1)
6.7 Exercises
215(8)
References
222(1)
7 High Order Curvature Correction
223(36)
7.1 Compensation Order
224(4)
7.2 Second Order Temperature Compensation
228(10)
7.2.1 Second Order Current Source
229(3)
7.2.2 Current Subtraction
232(4)
7.2.3 Current Addition
236(2)
7.3 BJT Current Subtraction
238(2)
7.4 Piecewise Linear Compensation
240(3)
7.5 Sum and Difference of Sources with Similar Temperature Dependence
243(9)
7.5.1 Difference of Voltages with Similar Temperature Dependence
244(1)
7.5.2 Sum of Voltages with Inverted Temperature Dependence
245(2)
7.5.3 `Multi-threshold Voltages Curvature Compensated Voltage Reference'
247(5)
7.6 Summary
252(1)
7.7 Exercises
253(6)
References
257(2)
8 CMOS Voltage Reference without Resistors
259(30)
8.1 Generation of Weighted PTAT Source By Inverse Functions
260(5)
8.1.1 Weighted Differential Circuit
260(2)
8.1.2 Negative Impedance Converter
262(3)
8.2 Resistorless Voltage and Current Sources
265(3)
8.2.1 Resistorless Voltage Source
265(1)
8.2.2 Resistorless Current Source
266(2)
8.3 First Order Compensated Resistorless Bandgap Voltage Reference Circuit
268(2)
8.3.1 Voltage Summation Based Resistorless Reference Circuit
269(1)
8.3.2 Current Summation Based Resistorless Reference Circuit
270(1)
8.4 Resistorless Sub-Bandgap Reference Circuit
270(9)
8.4.1 The Voltage Summation Approach
271(2)
8.4.2 CTAT Voltage Reduction
273(6)
8.5 Summary
279(1)
8.6 Exercises
280(9)
References
281(2)
A SPICE Model File
283(4)
B SPICE Netlist of Voltage Reference Circuit
287(2)
Index 289
Chi-Wah Kok, Canaan Microelectronics Corporation Limited, China Chi-Wah Kok obtained his degree from the University of Wisconsin Madison. Since 1992, he has been working with various semi-conductor companies, research institutions and universities, which include AT&T Labs Research, Holmdel, SONY U.S. Research Labs, Stanford University, Hong Kong University of Science and Technology, Hong Kong Polytechnic University, City University of Hong Kong, and Lattice Semiconductor. In 2006, he founded Canaan Microelectronics Corp Ltd., a fabless IC company with products in mixed signal IC for consumer electronics. He has extensively applied signal processing techniques to improve the circuit topologies, designs, and fabrication technologies within Canaan. This includes the application of semidefinite programming to circuit design optimization, abstract algebra in switched capacitor circuit topologies improvement, and nonlinear optimization methods to optimize high voltage MOSFET layout and fabrication.

Wing-Shan Tam, Canaan Microelectronics Corp Limited, China Wing-Shan Tam received her BEng degree in electronic engineering from The Chinese University of Hong Kong, and MSc degree in electronic and information engineering from The Hong Kong Polytechnic University, and PhD degree in electronic engineering from the City University of Hong Kong in 2004, 2007, and 2010, respectively. Currently, she is the Engineering Manager of Canaan Microelectronics Corp Ltd., and she has been working with CMOS circuit design since 2004. Her research interests include mixed-signal integrated circuit design for data conversion and power-management.