Muutke küpsiste eelistusi

E-raamat: Coarse Graining Turbulence: Modeling and Data-Driven Approaches and their Applications

Edited by (Los Alamos National Laboratory), Edited by (Los Alamos National Laboratory), Edited by (Duke University, North Carolina)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 31-Jan-2025
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009377362
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 191,42 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 31-Jan-2025
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009377362
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

We live in a turbulent world observed through coarse grained lenses. Coarse graining (CG), however, is not only a limit but also a need imposed by the enormous amount of data produced by modern simulations. Target audiences for our survey are graduate students, basic research scientists, and professionals involved in the design and analysis of complex turbulent flows. The ideal readers of this book are researchers with a basic knowledge of fluid mechanics, turbulence, computing, and statistical methods, who are disposed to enlarging their understanding of the fundamentals of CG and are interested in examining different methods applied to managing a chaotic world observed through coarse-grained lenses.

Written by experts in the field of coarse graining, this volume consists of reviews and surveys designed to introduce researchers and graduate students to the basic ideas and research literature, before proceeding to specific applications of coarse graining techniques in a variety of areas.

Muu info

A collection of reviews and surveys introducing the main methods and key applications of coarse graining techniques.
Prologue. Coarse graining turbulence; Part I. Paradigms and Tools:
1.
Numerical simulations and coarse graining Fernando F. Grinstein;
2. An
overview of scale-resolving simulation models for practical flows Filipe S.
Pereira;
3. Filtering approaches and coarse graining Massimo Germano;
4.
Filtered density function: a stochastic closure for coarse grained simulation
Hua Zhou, Peyman Givi and Zhuyin Ren;
5. Symmetries, subgrid-scale modeling,
and coarse graining Martin Oberlack and Dario Klingenberg;
6. Coarse graining
turbulence using the MoriZwanzig formalism Eric Parish and Karthik
Duraisamy;
7. Data-driven modeling for coarse graining Richard D. Sandberg
and Markus Klein;
8. Verification, validation, uncertainty quantification,
and coarse graining Filipe S. Pereira, William J. Rider, Fernando F.
Grinstein and Luís Eça; Part II. Challenges:
9. Transition to turbulence
Daniel M. Israel;
10. Wall-bounded turbulence Robert D. Moser and Prakash
Mohan;
11. Scale-by-scale non-equilibrium in turbulent flows John Christos
Vassilicos and Jean-Philippe Laval;
12. Coarse graining in multiphase flows:
from micro to meso to macroscale for EulerLagrange and EulerEuler
simulations S. Balachandar;
13. Coarse graining for thermal flows Himani
Garg, Gustav Karlsson, Lei Wang and Christer Fureby;
14. High-order
simulations of supersonic combustion Yun-Qin He and Guo-Zhu Liang;
15. Coarse
graining supersonic combustion Christer Fureby and Tommie Nilsson;
16.
Transition and multiphysics in inertial confinement fusion capsules Fernando
F. Grinstein, Vincent P. Chiravalle, Brian M. Haines, Robert K. Greene and
Filipe S. Pereira;
17. Firestorms, fallout, and atmospheric turbulence
induced by a nuclear detonation Jon Reisner, Eunmo Koo, Alexander Josephson
and Alexander L. Brown; Epilogue. Outlook on coarse graining turbulence; List
of Abbreviations; Index.
Fernando F. Grinstein has been a Staff Scientist at Los Alamos National Laboratory since 2005. Grinstein was the 20032004 LANL Orson Anderson Distinguished Visiting Scholar, and was Research Physicist at the US Naval Research Laboratory in Washington DC (19832005). Grinstein has authored two Cambridge University Press books: 'Implicit LES: Computing Turbulent Flow Dynamics' (2007, 2010) with Len Margolin and William Rider and 'Coarse Grained Simulation and Turbulent Mixing' (2016). Filipe S. Pereira has been Staff Scientist at Los Alamos National Laboratory since 2022, and recently became an Adjunct Professor at the Ocean Engineering Department of Texas A&M University. He received his PhD in Computational Engineering from Instituto Superior Técnico in 2018. His PhD research was conducted at Instituto Superior Técnico, Maritime Research Institute Netherlands, and Texas A&M University. Pereira's research focuses on numerical prediction, turbulence modeling, scale-resolving simulation and Reynolds averaged NavierStokes equations modeling, verification, validation, and uncertainty quantification of complex flows. Massimo Germano joined the Politecnico di Torino in 1965, where he served as Full Professor in Gas Dynamics from 1981 till his retirement in 2012. He is presently an Adjunct Professor at Duke University, Department of Civil and Environmental Engineering. Germano has contributed to the advancement in the field of LES by proposing a new multiscale operational filtering approach based on the generalized central moments. An important application has been the Dynamic Model, developed jointly with Stanford University.