Muutke küpsiste eelistusi

E-raamat: Coding for Optical Channels

  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Apr-2010
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781441955692
  • Formaat - PDF+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Apr-2010
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781441955692

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In order to adapt to the ever-increasing demands of telecommunication needs, today's network operators are implementing 100 Gb/s per dense wavelength division multiplexing (DWDM) channel transmission. At those data rates, the performance of fiberoptic communication systems is degraded significantly due to intra- and inter-channel fiber nonlinearities, polarization-mode dispersion (PMD), and chromatic dispersion. In order to deal with those channel impairments, novel advanced techniques in modulation and detection, coding and signal processing are needed.This unique book represents a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory with the fundamentals of optical communication.

This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.

Arvustused

From the reviews:

This book covers a tremendous amount of ground. It is concerned primarily with the fundamentals of optical communications, digital signal processing and coding for optical channels. A particular strength of the book is its careful treatment of joint coding and modulation for optical communications. The exposition is very clear and comprehensive. It should be most valuable to graduate students who are seeking to acquire the broad background knowledge needed to become successful researchers or engineers in optical and wireless communications. (Christian Brosseau, Optics & Photonics News, May, 2011)

Introduction
1(24)
Historical Perspective of Optical Communications
2(2)
Optical Transmission and Optical Networking
4(5)
Optical Communications Trends
9(7)
Migration to 100 Gb/s Ethernet and Beyond
9(1)
Dynamically Reconfigurable Optical Networks
10(1)
Software-Defined Optical Transmission
11(2)
Digital Signal Processing and Coherent Detection
13(1)
OFDM for Optical Communications
14(2)
Forward Error Correction for Optical Communications and Networks
16(4)
Organization of the Book
20(2)
References
22(3)
Fundamentals of Optical Communication
25(50)
Introduction
25(1)
Key Optical Components
26(23)
Optical Transmitters
30(5)
Optical Receivers
35(2)
Optical Fibers
37(3)
Optical Amplifiers
40(4)
Other Optical Components
44(5)
Direct Detection Modulation Schemes
49(6)
Non-Return-to-Zero
49(1)
Return-to-Zero
50(1)
Alternate Mark Inversion
50(1)
Duobinary Modulation Format
51(1)
Carrier-Suppressed Return-to-Zero
52(2)
NRZ-DPSK
54(1)
RZ-DPSK
54(1)
Coherent Detection Modulation Schemes
55(17)
Optical Hybrids and Balanced Receivers
61(2)
Dominant Coherent Detector Noise Sources
63(4)
Homodyne Coherent Detection
67(1)
Phase Diversity Receivers
68(1)
Polarization Control and Polarization Diversity
69(1)
Polarization Multiplexing and Coded Modulation
70(2)
Summary
72(1)
References
72(3)
Channel Impairments and Optical Communication Systems Engineering
75(48)
Noise Sources
75(9)
Mode Partition Noise
76(1)
Reflection-Induced Noise
76(1)
Relative Intensity Noise (RIN) and Laser Phase Noise
76(2)
Modal Noise
78(1)
Quantum Shot Noise
79(1)
Dark Current Noise
80(1)
Thermal Noise
80(1)
Spontaneous Emission Noise
80(1)
Noise Beat Components
81(1)
Crosstalk Components
82(2)
Channel Impairments
84(26)
Fiber Attenuation
84(1)
Insertion Losses
85(1)
Chromatic Dispersion and Single Mode Fibers
85(9)
Multimode Dispersion and Multimode Fibers
94(3)
Polarization-Mode Dispersion
97(3)
Fiber Nonlinearities
100(10)
Transmission System Performance Assessment and System Design
110(11)
Quantum Limit for Photodetection
112(1)
Shot Noise and Thermal Noise Limit
113(1)
Receiver Sensitivity for Receivers with Optical Preamplifier
114(1)
Optical Signal-to-Noise Ratio
114(1)
Power Penalty Due to Extinction Ratio
115(1)
Power Penalty Due to Intensity Noise
115(1)
Power Penalty Due to Timing Jitter
116(1)
Power Penalty Due to GVD
116(1)
Power Penalty Due to Signal Crosstalk
117(1)
Accumulation Effects
117(2)
Systems Design
119(1)
Optical Performance Monitoring
120(1)
Summary
121(1)
References
121(2)
Channel Coding for Optical Channels
123(56)
Channel Coding Preliminaries
124(6)
Linear Block Codes
130(12)
Generator Matrix for Linear Block Code
131(1)
Parity-Check Matrix for Linear Block Code
132(2)
Distance Properties of Linear Block Codes
134(1)
Coding Gain
135(2)
Syndrome Decoding and Standard Array
137(4)
Important Coding Bounds
141(1)
Cyclic Codes
142(6)
Bose-Chaudhuri-Hocquenghem Codes
148(10)
Galois Fields
148(3)
The Structure and Decoding of BCH Codes
151(7)
Reed-Solomon Codes, Concatenated Codes, and Product Codes
158(3)
Trellis Description of Linear Block Codes and Viterbi Algorithm
161(5)
Convolutional Codes
166(10)
Distance Properties of Convolutional Codes
172(2)
Bounds on the Bit-Error Ratio of Convolutional Codes
174(2)
Summary
176(1)
References
177(2)
Graph-Based Codes
179(28)
Overview of Graph-Based Codes
179(2)
Convolutional Turbo Codes
181(12)
Performance Characteristics of Parallel and Serial Turbo Codes
182(2)
The PCCC Iterative Decoder
184(7)
The SCCC Iterative Decoder
191(2)
Block Turbo Codes
193(3)
Overview of Turbo Decoding of BTCs
193(3)
LDPC Codes
196(9)
Matrix Representation
196(1)
Graphical Representation
197(1)
LDPC Code Design Approaches
198(1)
LDPC Decoding Algorithms
199(3)
Reduced Complexity Decoders
202(3)
Concluding Remarks
205(1)
References
205(2)
Coded Modulation
207(42)
Multilevel Modulation Schemes
207(4)
Single-Carrier-Coded Modulation Schemes
211(7)
Multidimensional Coded Modulation Schemes
218(5)
Coded OFDM in Fiber-Optics Communication Systems
223(21)
Coded OFDM in Fiber-optics Communication Systems with Direct Detection
224(7)
Coded OFDM in Fiber-Optics Communication Systems with Coherent Detection
231(13)
Summary
244(1)
References
245(4)
Turbo Equalization in Fiber-Optics Communication Systems
249(36)
Channel Equalization Preliminaries
250(7)
Turbo Equalization in Fiber-Optics Communication Systems with Direct Detection
257(14)
Description of LDPC-Coded Turbo Equalizer
258(4)
Large-Girth LDPC Codes
262(3)
Suppression of Intrachannel Nonlinearities by LDPC-Coded Turbo Equalization
265(2)
Chromatic Dispersion Compensation
267(2)
PMD Compensation
269(2)
Multilevel Turbo Equalization in Fiber-Optics Communication Systems with Coherent Detection
271(11)
Description of Multilevel Turbo Equalizer
271(6)
Mitigation of Intrachannel Nonlinearities by LDPC-Coded Turbo Equalization Based on Multilevel BCJR Algorithm
277(2)
PMD Compensation in Polarization Multiplexed Multilevel Modulations by Turbo Equalization
279(3)
Summary
282(1)
References
282(3)
Constrained Coding for Optical Communication
285(26)
Introduction
285(1)
Fundamentals of Constrained Systems
286(4)
Construction of Finite-State Encoders
290(4)
Decoders for Constrained Codes
294(5)
Applications to Optical Communications
299(9)
Use of Constrained Encoding
300(5)
Combined Constrained and Error Control Coding
305(1)
Deliberate Error Insertion
306(2)
Concluding Remarks
308(1)
References
309(2)
Coding for Free-space Optical Channels
311(42)
Atmospheric Turbulence Channel Modeling
312(5)
Zero Inner Scale
313(1)
Nonzero Inner Scale
313(2)
Temporal Correlation FSO Channel Model
315(2)
Coded MIMO FSO Communication
317(11)
LDPC-Coded MIMO Concept and Space-Time Coding
317(5)
Bit-Interleaved LDPC-coded Pulse-Amplitude Modulation
322(4)
Bit-Interleaved LDPC-coded Pulse-Position Modulation
326(2)
FSO-OFDM Transmission System
328(9)
OFDM in Hybrid Optical Networks
337(9)
Hybrid Optical Networks
338(3)
Description of Receiver and Transmission Diversity Scheme
341(2)
Performance Evaluation of Hybrid Optical Networks
343(3)
Raptor Codes for Temporally Correlated FSO Channels
346(4)
Summary
350(1)
References
350(3)
Optical Channel Capacity
353(46)
Channel Capacity Preliminaries
354(6)
Calculation of Information Capacity by Forward Recursion of BCJR Algorithm
360(4)
Information Capacity of Fiber-Optics Communication Systems with Direct Detection
364(6)
Information Capacity of Multilevel Fiber-Optics Communication Systems with Coherent Detection
370(2)
On the Channel Capacity of Optical OFDM Systems for ASE-Noise-Dominated Scenario
372(9)
Power-Variable Rate-Adaptive Polarization-Multiplexed Coherent-Coded OFDM
373(3)
Adaptive-Coded OFDM for Communication Over GI-POF Links
376(2)
Adpative-Coded OFDM for Radio-over-Fiber Technologies
378(3)
On the Channel Capacity of Hybrid Free-Space Optical-Wireless Channels
381(10)
Hybrid FSO-Wireless System Description
381(3)
Adaptive Modulation and Coding
384(7)
On the Channel Capacity of Optical MIMO MMF Systems
391(5)
References
396(3)
Future Research Directions in Coding for Optical Channels
399(34)
Binary QC-LDPC Codes of Large Girth
401(4)
Design of Large-Girth QC-LDPC Codes
401(1)
FPGA Implementation of Large-Girth LDPC Codes
402(3)
Nonbinary QC-LDPC Codes
405(3)
Nonbinary LDPC-Coded Modulation for Beyond 100 Gb/s Transmission
408(5)
Adaptive Nonbinary LDPC-Coded Modulation
413(3)
Adaptive LDPC-Coded OFDM
416(4)
Generalized LDPC Codes
420(4)
LDPC-Coded Hybrid Frequency/Amplitude/Phase/Polarization Modulation
424(4)
Concluding Remarks
428(1)
References
429(4)
Index 433