Muutke küpsiste eelistusi

E-raamat: Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach, Second Edition

  • Formaat: 222 pages
  • Ilmumisaeg: 31-Jan-2020
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630817749
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 101,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 222 pages
  • Ilmumisaeg: 31-Jan-2020
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630817749
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This highly-anticipated second edition of the bestselling Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach, the first book on the subject, provides up-to-the-minute advances in the field of cognitive radar (CR). Adaptive waveform methods are discussed in detail, along with optimum resource allocation and radar scheduling. Chronicling the field of cognitive radar (CR), this cutting-edge resource provides an accessible introduction to the theory and applications of CR, and presents a comprehensive overview of the latest developments in this emerging area. It covers important breakthroughs in advanced radar systems, and offers new and powerful methods for combating difficult clutter environments. You find details on specific algorithmic and real-time high-performance embedded computing (HPEC) architectures. This practical book is supported with numerous examples that clarify key topics, and includes more than 370 equations.
Preface 11(4)
1 Introduction
15(22)
1.1 Why "Cognitive" Radar?
15(1)
1.2 Functional Elements and Characteristics of a Cognitive Radar Architecture
16(16)
1.2.1 Adaptive Transmit Capability
19(5)
1.2.2 Knowledge-Aided Processing
24(5)
1.2.3 Optimum Resource Allocation and Scheduling for Cognitive Radar
29(2)
1.2.3 Optimum Resource Allocation and Scheduling for Cognitive Radar
31(1)
1.3 Book Organization
32(1)
References
32(5)
2 Optimum Multi-Input Multioutput Radar
37(50)
2.1 Introduction
37(1)
2.2 Jointly Optimizing the Transmit and Receive Functions Case I: Maximizing SINR
38(5)
Example 2.1 Multipath Interference
43(5)
2.3 Jointly Optimizing the Transmit and Receive Functions Case II: Maximizing Signal-to-Clutter
48(1)
Example 2.2 Sidelobe Target Suppression: Sidelobe Nulling on Transmit
49(2)
Example 2.3 Optimal Pulse Shape for Maximizing SCR
51(3)
Example 2.4 Optimum Space-Time MIMO Processing for Clutter Suppression in Airborne MTI Radar
54(6)
2.4 Optimum MIMO Target Identification
60(3)
Example 2.5 Two-Target Identification Example
63(1)
Multitarget Case
64(2)
Example 2.6 Multitarget Identification Example
66(1)
2.5 Constrained Optimum MIMO Radar
67(1)
Case I Linear Constraints
67(1)
Example 2.7 Prenulling on Transmit
68(2)
Case II Nonlinear Constraints
70(1)
Relaxed Projection Approach
70(1)
Example 2.8 Relaxed Projection Example
71(1)
Constant Modulus and the Method of Stationary Phase
72(2)
Example 2.9 Nonlinear FM (NLFM) to Achieve Constant Modulus
74(6)
Example 2.10 Matched Subspace Example
80(1)
2.6 Recent Advances in Constrained Optimum MIMO
80(2)
References
82(2)
Appendix 2.A Infinite Duration (Steady State) Case
84(3)
3 Adaptive MIMO Radar
87(32)
3.1 Introduction
87(1)
3.2 Transmit-Independent Channel Estimation
88(2)
Example 3.1 Adaptive Multipath Interference Mitigation
90(1)
3.3 Dynamic MIMO Calibration
91(1)
Example 3.2 MIMO Cohere-on-Target
91(2)
3.4 Transmit-Dependent Channel Estimation
93(1)
Example 3.2 STAP-Tx Example
94(3)
Example 3.2 DDMA MIMO STAP Clutter Mitigation Example for GMTI Radar
97(4)
3.5 Theoretical Performance Bounds of the DDMA MIMO STAP Approach
101(5)
3.6 Nonorthogonal MIMO Probing for Channel Estimation
106(10)
References
116(3)
4 Introduction to KA Adaptive Radar
119(40)
4.1 The Need for KA Radar
119(5)
4.2 Introduction to KA Radar: Back to "Bayes-ics"
124(4)
4.2.1 Indirect KA Radar: Intelligent Training and Filter Selection
126(2)
Example 4.1 Intelligent Filter Selection: Matching the Adaptive DoFs (ADoFs) to the Available Training Data
128(7)
4.2.2 Direct KA Radar: Bayesian Filtering and Data Prewhitening
131(4)
Example 4.2 Using Past Observations as a Prior Knowledge Source
135(4)
4.3 Real-Time KA Radar: The DARPA KASSPER Project
139(4)
4.3.1 Solution: Look-Ahead Scheduling
140(3)
Example 4.3 Balancing Throughput in a KASSPER HPEC Architecture
143(10)
4.3.2 Examples of a KA Architectures Developed by the DARPA/AFRL KASSPER Project
146(7)
4.4 KA Radar Epilogue
153(2)
References
155(4)
5 Putting it All Together: CoFAR
159(10)
5.1 Cognitive Radar: The Fully Adaptive Knowledge-Aided Approach
159(5)
5.1.1 A Cognitive Radar Architecture for GMTT
160(2)
5.1.2 Informal Operational Narrative for a GMTI Radar
162(2)
5.2 CoFAR Radar Scheduler
164(2)
5.3 Areas for Future Research and Development
166(1)
References
167(2)
6 Cognitive Radar and Artificial Intelligence
169(8)
6.1 Relationship between Cognitive Radar and Artificial Intelligence
169(1)
6.2 Cognitive Radar Utilizing Traditional AI
170(1)
6.3 Cognitive Radar Utilizing Deep Learning AI
171(4)
6.3.1 CoFAR Mission Computer
173(1)
6.3.2 CoFAR Radar Controller and Scheduler
174(1)
6.3.3 CoFAR RTCE
175(1)
6.4 Summary
175(1)
References
176(1)
About the Author 177(2)
Index 179