Preface |
|
11 | (4) |
|
|
15 | (22) |
|
1.1 Why "Cognitive" Radar? |
|
|
15 | (1) |
|
1.2 Functional Elements and Characteristics of a Cognitive Radar Architecture |
|
|
16 | (16) |
|
1.2.1 Adaptive Transmit Capability |
|
|
19 | (5) |
|
1.2.2 Knowledge-Aided Processing |
|
|
24 | (5) |
|
1.2.3 Optimum Resource Allocation and Scheduling for Cognitive Radar |
|
|
29 | (2) |
|
1.2.3 Optimum Resource Allocation and Scheduling for Cognitive Radar |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (5) |
|
2 Optimum Multi-Input Multioutput Radar |
|
|
37 | (50) |
|
|
37 | (1) |
|
2.2 Jointly Optimizing the Transmit and Receive Functions Case I: Maximizing SINR |
|
|
38 | (5) |
|
Example 2.1 Multipath Interference |
|
|
43 | (5) |
|
2.3 Jointly Optimizing the Transmit and Receive Functions Case II: Maximizing Signal-to-Clutter |
|
|
48 | (1) |
|
Example 2.2 Sidelobe Target Suppression: Sidelobe Nulling on Transmit |
|
|
49 | (2) |
|
Example 2.3 Optimal Pulse Shape for Maximizing SCR |
|
|
51 | (3) |
|
Example 2.4 Optimum Space-Time MIMO Processing for Clutter Suppression in Airborne MTI Radar |
|
|
54 | (6) |
|
2.4 Optimum MIMO Target Identification |
|
|
60 | (3) |
|
Example 2.5 Two-Target Identification Example |
|
|
63 | (1) |
|
|
64 | (2) |
|
Example 2.6 Multitarget Identification Example |
|
|
66 | (1) |
|
2.5 Constrained Optimum MIMO Radar |
|
|
67 | (1) |
|
Case I Linear Constraints |
|
|
67 | (1) |
|
Example 2.7 Prenulling on Transmit |
|
|
68 | (2) |
|
Case II Nonlinear Constraints |
|
|
70 | (1) |
|
Relaxed Projection Approach |
|
|
70 | (1) |
|
Example 2.8 Relaxed Projection Example |
|
|
71 | (1) |
|
Constant Modulus and the Method of Stationary Phase |
|
|
72 | (2) |
|
Example 2.9 Nonlinear FM (NLFM) to Achieve Constant Modulus |
|
|
74 | (6) |
|
Example 2.10 Matched Subspace Example |
|
|
80 | (1) |
|
2.6 Recent Advances in Constrained Optimum MIMO |
|
|
80 | (2) |
|
|
82 | (2) |
|
Appendix 2.A Infinite Duration (Steady State) Case |
|
|
84 | (3) |
|
|
87 | (32) |
|
|
87 | (1) |
|
3.2 Transmit-Independent Channel Estimation |
|
|
88 | (2) |
|
Example 3.1 Adaptive Multipath Interference Mitigation |
|
|
90 | (1) |
|
3.3 Dynamic MIMO Calibration |
|
|
91 | (1) |
|
Example 3.2 MIMO Cohere-on-Target |
|
|
91 | (2) |
|
3.4 Transmit-Dependent Channel Estimation |
|
|
93 | (1) |
|
Example 3.2 STAP-Tx Example |
|
|
94 | (3) |
|
Example 3.2 DDMA MIMO STAP Clutter Mitigation Example for GMTI Radar |
|
|
97 | (4) |
|
3.5 Theoretical Performance Bounds of the DDMA MIMO STAP Approach |
|
|
101 | (5) |
|
3.6 Nonorthogonal MIMO Probing for Channel Estimation |
|
|
106 | (10) |
|
|
116 | (3) |
|
4 Introduction to KA Adaptive Radar |
|
|
119 | (40) |
|
4.1 The Need for KA Radar |
|
|
119 | (5) |
|
4.2 Introduction to KA Radar: Back to "Bayes-ics" |
|
|
124 | (4) |
|
4.2.1 Indirect KA Radar: Intelligent Training and Filter Selection |
|
|
126 | (2) |
|
Example 4.1 Intelligent Filter Selection: Matching the Adaptive DoFs (ADoFs) to the Available Training Data |
|
|
128 | (7) |
|
4.2.2 Direct KA Radar: Bayesian Filtering and Data Prewhitening |
|
|
131 | (4) |
|
Example 4.2 Using Past Observations as a Prior Knowledge Source |
|
|
135 | (4) |
|
4.3 Real-Time KA Radar: The DARPA KASSPER Project |
|
|
139 | (4) |
|
4.3.1 Solution: Look-Ahead Scheduling |
|
|
140 | (3) |
|
Example 4.3 Balancing Throughput in a KASSPER HPEC Architecture |
|
|
143 | (10) |
|
4.3.2 Examples of a KA Architectures Developed by the DARPA/AFRL KASSPER Project |
|
|
146 | (7) |
|
|
153 | (2) |
|
|
155 | (4) |
|
5 Putting it All Together: CoFAR |
|
|
159 | (10) |
|
5.1 Cognitive Radar: The Fully Adaptive Knowledge-Aided Approach |
|
|
159 | (5) |
|
5.1.1 A Cognitive Radar Architecture for GMTT |
|
|
160 | (2) |
|
5.1.2 Informal Operational Narrative for a GMTI Radar |
|
|
162 | (2) |
|
5.2 CoFAR Radar Scheduler |
|
|
164 | (2) |
|
5.3 Areas for Future Research and Development |
|
|
166 | (1) |
|
|
167 | (2) |
|
6 Cognitive Radar and Artificial Intelligence |
|
|
169 | (8) |
|
6.1 Relationship between Cognitive Radar and Artificial Intelligence |
|
|
169 | (1) |
|
6.2 Cognitive Radar Utilizing Traditional AI |
|
|
170 | (1) |
|
6.3 Cognitive Radar Utilizing Deep Learning AI |
|
|
171 | (4) |
|
6.3.1 CoFAR Mission Computer |
|
|
173 | (1) |
|
6.3.2 CoFAR Radar Controller and Scheduler |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
175 | (1) |
|
|
176 | (1) |
About the Author |
|
177 | (2) |
Index |
|
179 | |