Muutke küpsiste eelistusi

E-raamat: Coherent States, Wavelets and Their Generalizations

  • Formaat - PDF+DRM
  • Hind: 200,07 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents a survey of the theory of coherent states, wavelets, and some of their generalizations, emphasizing mathematical structures. The point of view is that both the theories of both wavelets and coherent states can be subsumed into a single analytic structure. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent otherwise obscure properties of wavelets and of coherent states. Many concrete examples, such as semisimple Lie groups, the relativity group, and several kinds of wavelets, are discussed in detail. The book concludes with physical applications, centering on the quantum measurement problem and the quantum-classical transition. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self- contained. With its extensive references to the research literature, the book will also be a useful compendium of recent results for physicists and mathematicians already active in the field.

Wavelets have become an important analytical tool in signal processing and other applications; coherent states provide a useful analytic framework in many areas of physics, including quantum optics and atomic physics. This book presents a unified survey of the theories of coherent states, wavelets, and some of their generalizations, emphasizing mathematical structures. With its extensive references to the research literature, the book will be a useful compendium of recent results.

Arvustused

From the reviews: "The subject of coherent states and/or wavelets (CS-W) is a hot topic for decades. ... Personally I prefer the book under review to many other ones published before. ... It is clearly written, mathematically sound and well illustrated ... . Short but informative historical remarks in the text additionally guide through the literature. The index is useful too. ... I recommend this book to everyone who wishes to learn CS-W, or already works in the area, or just needs a good reference source." (Vladimir V. Kisil, Zentralblatt MATH, Vol. 1064, 2005)

Muu info

Springer Book Archives
Preface v
Introduction
1(12)
Canonical Coherent States
13(20)
Minimal Uncertainty states
13(4)
The group-theoretical backdrop
17(3)
Some functional analytic properties
20(4)
A complex analytic viewpoint
24(2)
Some geometrical considerations
26(1)
Outlook
27(1)
Two illustrative examples
27(6)
A quantization problem
27(2)
An application to atomic physics
29(4)
Positive Operator-Valued Measures and Frames
33(14)
Definitions and main properties
34(6)
The case of a tight frame
40(1)
Example: A commutative POV measure
41(1)
Discrete frames
42(5)
Some Group Theory
47(42)
Homogeneous spaces, quasi-invariant, and invariant measures
47(7)
Induced representations and systems of covariance
54(14)
Vector coherent states
59(2)
Discrete series representations of SU(1, 1)
61(6)
The regular representations of a group
67(1)
An extended Schur's lemma
68(2)
Harmonic analysis on locally compact abelian groups
70(5)
Basic notions
70(2)
Lattices in LCA groups
72(1)
Sampling in LCA groups
73(2)
Lie groups Lie algebras: A reminder
75(14)
Lie algebras
75(2)
Lie groups
77(5)
Extensions of Lie algebras and Lie groups
82(3)
Contraction of Lie algebras and Lie groups
85(4)
Hilbert Spaces with Reproducing Kernels and Coherent States
89(20)
A motivating example
89(3)
Measurable fields and direct integrals
92(2)
Reproducing kernel Hilbert spaces
94(12)
Positive-definite and evaluation maps
94(5)
Coherent states and POV functions
99(2)
Some isomorphisms, bases, and v-selections
101(3)
A reconstruction problem: Example of a holomorphic map
104(2)
Some properties of reproducing kernel Hilbert spaces
106(3)
Square Integrable and Holomorphic Kernels
109(18)
Square integrable kernels
109(3)
Holomorphic kernels
112(4)
Coherent states: The holomorphic case
116(11)
An example of a holomorphic frame
119(3)
A nonholomorphic excursion
122(5)
Covariant Coherent States
127(20)
Covariant coherent states
128(8)
A general definition
128(1)
The Gilmore-Perelomov CS and vector CS
129(4)
A geometrical setting
133(3)
Example: The classical theory of coherent states
136(5)
CS of compact semisimple Lie groups
136(3)
CS of noncompact semisimple Lie groups
139(2)
CS of non-semisimple Life groups
141(1)
Square integrable covariant CS: The general case
141(6)
Some further generalizations
144(3)
Coherent States from Square Integrable Representations
147(24)
Square integrable group representations
148(7)
Orthogonality relations
155(5)
The Wigner map
160(4)
Modular structures and statistical mechanics
164(7)
Some Examples and Generalizations
171(28)
A class of semidirect product groups
171(10)
Three concrete examples
176(3)
A broader setting
179(2)
A generalization: α- and V-admissibility
181(18)
Example of the Galilei group
186(4)
CS of the isochronous Galilei group
190(6)
Atomic coherent states
196(3)
CS of General Semidirect Product Groups
199(26)
Squeezed states
200(4)
Geometry of semidirect product groups
204(10)
A special class of orbits
204(2)
The coadjoint orbit structure of Γ
206(3)
Measures on Γ
209(4)
Induced representations of semidirect products
213(1)
CS of semidirect products
214(11)
Admissible affine sections
220(5)
CS of the Relativity Groups
225(32)
The Poincare groups P↑+ (1, 3) and P↑+ (1, 1)
225(17)
The Poincare group in 1+3 dimensions, P↑+ (1, 3)
225(10)
The Poincare group in 1+1 dimensions, P↑+ (1, 1)
235(5)
Poincare CS: The massless case
240(2)
The Galilei groups G (1, 1) and G ≡ (1, 3)
242(3)
The anti-de Sitter group SO0 (1, 2) and its contractions(s)
245(12)
Wavelets
257(26)
A word of motivation
257(9)
Derivation and properties of the 1-D continuous wavelet transform
261(5)
A mathematical aside: Extension to distributions
266(6)
Interpretation of the continuous wavelet transform
272(2)
The CWT as phase space representation
272(1)
Localization properties and physical interpretation of the CWT
273(1)
Discretization of the continuous WT: Discrete frames
274(2)
Ridges and skeletons
276(2)
Applications
278(5)
Discrete Wavelet Transforms
283(24)
The discrete time or dyadic WT
283(6)
Multiresolution analysis and orthonormal wavelet bases
284(1)
Connection with filters and the subband coding scheme
285(2)
Generalizations
287(1)
Applications
288(1)
Towards a fast: CWT: Continuous wavelet packets
289(1)
Wavelets on the finite field Zp
290(2)
Algebraic wavelets
292(15)
τ-wavelets of Haar on the line
292(11)
Pisot wavelets, etc.
303(4)
Multidimensional Wavelets
307(24)
Going to higher dimensions
307(1)
Mathematical analysis
308(8)
The 2-D case
316(15)
Minimality properties
316(2)
Interpretation, visualization problems, and calibration
318(4)
Practical applications of the CWT in two dimensions
322(5)
The discrete WT in two dimensions
327(3)
Continuous wavelet packets in two dimensions
330(1)
Wavelets Related to Other Groups
331(22)
Wavelets on the sphere and similar manifolds
331(7)
The two-sphere
331(5)
Generalization to other manifolds
336(2)
The affine Weyl-Heisenberg group
338(4)
The affine or similitude groups of space-time
342(11)
Kinematical wavelets
342(2)
The affine Galilei group
344(3)
The (restricted) Schrodinger group
347(2)
The affine Poincare group
349(4)
The Discretization Problem: Frames, Sampling, and All That
353(36)
The Weyl-Heisenberg group or canonical CS
354(3)
Wavelet frames
357(2)
Frames for affine semidirect products
359(5)
The affine Weyl-Heisenberg group
359(1)
The affine Poincare groups
360(2)
Discrete frames for general semidirect products
362(2)
Groups without dilations: The Poincare groups
364(5)
A group-theoretical approach to discrete wavelet transforms
369(18)
Generalities on sampling
369(1)
Wavelets on Zp revisited
370(2)
Wavelets on a discrete abelian group
372(15)
Conclusion
387(2)
Conclusion and Outlook 389(4)
References 393(22)
Index 415