Muutke küpsiste eelistusi

E-raamat: Coiled Tubing and Other Stimulation Techniques: Formation Damage, Well Stimulation Techniques for Production Enhancement

(Ministry of Manpower, Nizwa College of Technology, Oman)
  • Formaat - EPUB+DRM
  • Hind: 88,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Presents procedures taken in the oil and gas industry for identifying well problems, and suggests means of solving problems with the help of the coil tube unit which is used for improving well productivity and techniques like acidizing and hydraulic fracturing.

Good engineers never stop looking for opportunities to improve the performance of their production systems. Performance enhancement methods are always carefully examined, and production data is analyzed in order to identify determining factors affecting performance.

The two main activities of the production engineer in the petroleum and related industries are reservoir stimulation and artificial lift. The classic solution to maximizing a well's productivity is to stimulate it. The basis for selecting stimulation candidates should be a review of the well's actual and theoretical IPR. Low permeability wells often need fracturing on initial completion. In low permeability zones, additional post stimulation production can be significant to the economics, however, the production engineer needs to make management aware of the true long term potential or else overly optimistic projections can easily be made.

The main purpose of stimulation is to enhance the property value by the faster delivery of the petroleum fluid and/or to increase ultimate economic recovery. The aim of reservoir stimulation is to bypass near-wellbore damage and return a well to its "natural" productivity/injectivity, to extend a conductive path deep into a formation and thus increase productivity beyond the natural level and to produce hydrocarbon from tight formation.

The importance of reservoir stimulation is increasing due to following reasons:

  • Hydrocarbon fields in their mid-life
  • Production in these fields are in declining trend
  • The thrust area: Enhancement of production

Hence, to improve productivity of the well matrix stimulation and hydraulic fracturing are intended to remedy, or even improve, the natural connection of the wellbore with the reservoir, which could delay the need for artificial lift.

This book presents procedures taken in the oil and gas industry for identifying well problems, and it suggests means of solving problems with the help of the Coil Tube unit which is used for improving well productivity and techniques like Acidizing and Hydraulic Fracturing.
Preface xiii
Acknowledgement xv
List of Figures
xvii
List of Tables
xxiii
List of Abbreviations
xxv
1 Coiled Tubing Technology
1(80)
1.1 Introduction
1(1)
1.2 History
2(3)
1.3 Advantages and Limitations
5(1)
1.3.1 Advantages of CT System
5(1)
1.3.2 Limitations
5(1)
1.4 Basic Equipment
6(10)
1.4.1 The Coiled Tubing
6(1)
1.4.2 CT Manufacturing
7(1)
1.4.3 CT Mechanical Performance
8(1)
1.4.4 Tubing Reel
8(1)
1.4.5 Injector
9(1)
1.4.6 Stuffing Box
10(1)
1.4.7 Blow Out Preventer (BOP)
11(1)
1.4.8 Blind Ram Assembly
12(1)
1.4.9 Shear Ram Assembly
12(1)
1.4.10 Slip Ram Assembly
13(1)
1.4.11 Pipe Ram Assembly
13(1)
1.4.12 Control Console, the Power Pack, and Crane
14(2)
1.5 Safety and Precautions
16(2)
1.5.1 Safety
16(1)
1.5.1.1 Safety - movement of unit
16(1)
1.5.1.2 Safety: operations at well
16(1)
1.5.2 Precautions
17(1)
1.6 Operational Checks and Requirements
18(1)
1.7 Operating Procedure
19(3)
1.8 Coiled Tubing Applications
22(35)
1.8.1 Conventional CT Operations
22(1)
1.8.1.1 Jetting for production/activation
22(1)
1.8.1.2 Jetting for under balance perforation
22(2)
1.8.1.3 Jetting for zone evaluation
24(1)
1.8.1.4 Jetting to back-flush disposal or injection well
25(1)
1.8.1.5 Sand washing with water
25(2)
1.8.1.6 Sand washing with nitrified water
27(1)
1.8.1.7 Sand washing with foam
28(2)
1.8.1.8 Clean out with a positive displacement motor (PDM)
30(2)
1.8.1.9 Paraffin removal
32(2)
1.8.1.10 Acid spotting
34(1)
1.8.1.11 Spotting a cement plug
34(1)
1.8.1.12 Zone squeezing with cement
35(2)
1.8.1.13 Circulating to kill a well
37(1)
1.8.1.14 Gelled sand slurry placement
38(1)
1.8.2 Advance CT Operations
39(1)
1.8.2.1 Completion with coil tubing
39(4)
1.8.2.2 CT-conveyed inflatable packer
43(3)
1.8.2.3 Under reaming
46(1)
1.8.2.4 Fishing
46(3)
1.8.2.5 Coiled tubing job in horizontal well
49(1)
1.8.2.6 Logging and perforating
49(3)
1.8.2.7 Sand control
52(2)
1.8.2.8 Spoolable gas lift string
54(1)
1.8.2.9 Cleaning out flow lines
54(1)
1.8.2.10 Drilling
55(2)
1.9 CT Down Hole Tools
57(5)
1.9.1 CT Connectors
57(1)
1.9.1.1 Grub screw/dimple connector
57(1)
1.9.1.2 Slip connector
57(1)
1.9.1.3 Roll on connector
58(1)
1.9.2 Twin Flapper Check Valve
58(1)
1.9.3 Hydraulic Release Joint
58(1)
1.9.4 Ball-Activated Circulation Valve
59(1)
1.9.5 Burst Disc Circulation Sub
59(1)
1.9.6 CT Jars and Accelerators
59(1)
1.9.7 Knuckle Joints
60(1)
1.9.8 Flow-Activated Bow String Centralizer
60(1)
1.9.9 CT Tubing End Locator
60(1)
1.9.10 Jetting Tools
60(1)
1.9.11 Lead Impression Block
61(1)
1.9.12 Through-Tubing Inflatable Packers and Bridge Plugs
61(1)
1.9.13 CTD Motors
61(1)
1.10 Trouble Shooting
62(2)
1.11 Software Applications in Coil Tubing Operations
64(5)
1.12 Coil Tubing Maintenance
69(1)
1.13 Case Histories
70(8)
1.14 Coiled Tubing -- Specifications
78(3)
2 Acidization
81(66)
2.1 Sandstone Acidization
81(3)
2.1.1 Matrix Acidization
81(3)
2.2 Acidization Chemistry
84(5)
2.3 Acidiz Acidization Kinetics
89(1)
2.3.1 Hydrofluoric Acid Concentration
89(1)
2.3.2 Hydrochloric Acid Concentration
89(1)
2.3.3 Temperature
89(1)
2.4 Acid Additives
89(8)
2.4.1 Corrosion Inhibitors
90(1)
2.4.1.1 Corrosion of metals
90(1)
2.4.1.2 Acid corrosion on steel
90(1)
2.4.1.3 Pitting types of acid corrosion
91(1)
2.4.2 Surfactants
91(1)
2.4.2.1 Anionic surfactants
92(1)
2.4.2.2 Cationic surfactants
93(1)
2.4.2.3 Nonionic surfactants
93(1)
2.4.2.4 Amphoteric surfactant
93(1)
2.4.3 Mutual Solvents
94(1)
2.4.4 Iron Control Additives
94(1)
2.4.4.1 Methods of iron control
95(1)
2.4.5 Alcohols
95(2)
2.5 Other Acidization Formulations
97(4)
2.5.1 Fluoboric Acid
98(1)
2.5.2 Mud Acid Plus Aluminum Chloride for Retardation
99(1)
2.5.3 Sequential Mud Acid
100(1)
2.5.4 Organic Mud Acid
100(1)
2.5.5 Self-generating Mud Acid
100(1)
2.5.6 Alcoholic Mud Acid
101(1)
2.6 Acid Treatment Design Considerations
101(5)
2.6.1 Selection of Fluid Sequence Stages
102(1)
2.6.2 Typical Sandstone Acid Job Stages
102(1)
2.6.2.1 Tubing pickle
103(1)
2.6.2.2 Preflush
104(1)
2.6.2.3 Main fluid stage
104(1)
2.6.2.4 Overflush stage
105(1)
2.7 Matrix Acidization Job Evaluation
106(4)
2.8 Laboratory Studies
110(3)
2.9 Carbonate Acidization
113(3)
2.9.1 Rock and Damage Characteristics
114(1)
2.9.2 Acidization Chemistry
115(1)
2.9.2.1 Reactions of hydrochloric acid with formation (carbonate) minerals
115(1)
2.10 Acidization Physics
116(5)
2.10.1 Reaction Process
116(1)
2.10.2 Wormholing Phenomenon
117(2)
2.10.3 Application to Field Design
119(2)
2.11 Other Acidization Formulations
121(2)
2.11.1 Organic Acids
121(1)
2.11.2 Gelled Acids
122(1)
2.12 Acid Fracturing
123(3)
2.12.1 Pressure Matching
125(1)
2.13 Fluid Placement Strategy
126(2)
2.13.1 Fluid Placement Versus Injection Rate
127(1)
2.13.2 MAPDIR Method
127(1)
2.14 Chemical Diverter Techniques
128(4)
2.14.1 Diverting Agent Properties
130(1)
2.14.2 Classification of Diverting Agents
131(1)
2.15 Foam Diversion
132(2)
2.15.1 Application Considerations
133(1)
2.16 Viscoelastic Diversion System
134(1)
2.17 Mechanical Diversion
135(4)
2.17.1 Acidizing with Ball Sealers
135(1)
2.17.2 Baffle or Packer Diversion
136(2)
2.17.3 Coiled Tubing Conveyed Straddle Packer
138(1)
2.18 Horizontal Wells
139(5)
2.18.1 Optimal Treatment
139(2)
2.18.2 Placement Techniques
141(3)
2.19 Flow Back and Cleanup Techniques
144(1)
2.20 Real-Time Monitoring
145(2)
3 Hydraulic Fracturing
147(144)
3.1 Fracturing: An Overview
147(13)
3.1.1 What is Fracturing?
147(4)
3.1.2 Why Fracture a Well?
151(1)
3.1.3 Design Considerations and Primary Variables
152(3)
3.1.4 In Situ Stress
155(1)
3.1.5 Design Goals
156(1)
3.1.6 Fluid Loss
157(2)
3.1.7 Treatment Pump Scheduling
159(1)
3.2 Fracturing: The Mechanism
160(23)
3.2.1 Rock Mechanics
160(1)
3.2.2 Mechanics of Hydraulic Fracturing
161(1)
3.2.2.1 Stresses
161(3)
3.2.2.2 Strains
164(1)
3.2.3 Linear Elasticity
164(2)
3.2.4 Influence of Pore Pressure
166(1)
3.2.5 Rock Failure
167(1)
3.2.6 Principal Stresses and Fracture Types
168(1)
3.2.7 Rock Mechanical Property Measurement
169(1)
3.2.7.1 Importance of rock properties in stimulation
169(1)
3.2.7.2 Laboratory testing
170(1)
3.2.7.3 Rock behavior
171(1)
3.2.7.4 Stress-strain curve
171(2)
3.2.7.5 Elastic parameters
173(2)
3.2.7.6 State of stress in the earth
175(1)
3.2.8 In Situ Stress Measurement
176(1)
3.2.8.1 Importance of stress measurement in stimulation
176(1)
3.2.8.2 Micro-hydraulic fracturing techniques
177(2)
3.2.9 Hydraulic Fracture Modeling
179(4)
3.2.10 Fluid Leakoff
183(1)
3.3 Candidate Selection and Considerations for Fracturing
183(21)
3.3.1 Candidate Selection
183(1)
3.3.1.1 Stimulation technique vs candidate well selection
184(1)
3.3.1.2 Identifying low-productivity wells and stimulation candidates
184(2)
3.3.2 Special Tools for Candidate Evaluation
186(1)
3.3.2.1 Nuclear magnetic resonance (NMR)
186(1)
3.3.2.2 Automatic zoning
187(1)
3.3.3 MDT in Well Stimulation
188(1)
3.3.4 Considerations for Fracturing
189(1)
3.3.4.1 Well potential
189(2)
3.3.4.2 Well completion
191(1)
3.3.4.3 Perforation policy
192(8)
3.3.4.4 Fracturing fluid and proppant selection
200(1)
3.3.4.5 Operations
201(1)
3.3.5 Economic Considerations
201(3)
3.4 Proppant
204(16)
3.4.1 Effect of Fracture Conductivity on Well Productivity
207(1)
3.4.2 Proppant Types
208(2)
3.4.3 Factors Affecting Fracture Conductivity
210(6)
3.4.4 Proppant Selection
216(1)
3.4.5 Proppant Admittance
216(2)
3.4.6 Fracture Conductivity Determination
218(1)
3.4.7 Quality Assurance and Quality Control
219(1)
3.5 Fracturing Fluid
220(25)
3.5.1 Types of Fracturing Fluids
222(1)
3.5.1.1 Water-based fluids
222(4)
3.5.1.2 Oil-based fluids
226(1)
3.5.1.3 Acid-based fluids
227(1)
3.5.1.4 Foam-based fluids
227(2)
3.5.1.5 Emulsion-based fluids
229(1)
3.5.2 Fracturing Fluid Additives
229(1)
3.5.2.1 Crosslinkers
229(4)
3.5.2.2 Breakers
233(2)
3.5.2.3 Fluid loss additives
235(2)
3.5.2.4 Bactericides
237(1)
3.5.2.5 Gel stabilizers
237(1)
3.5.2.6 Surfactants
238(1)
3.5.2.7 Clay stabilizers
238(1)
3.5.2.8 Buffering agents
239(1)
3.5.3 Rheology of Fracturing Fluid
239(2)
3.5.3.1 Determination of fluid rheology
241(2)
3.5.4 Quality Assurance and Quality Control
243(2)
3.6 Fracturing Operations
245(25)
3.6.1 Zone Isolation
245(3)
3.6.2 Surface Equipment for Fracturing Operations
248(1)
3.6.2.1 Wellhead isolation
249(1)
3.6.2.2 Treating iron
249(2)
3.6.2.3 High-pressure pumps
251(1)
3.6.2.4 Blending equipment
252(1)
3.6.2.5 Proppant storage and delivery
253(1)
3.6.2.6 Fracturing instrumentation
254(2)
3.6.2.7 Equipment placement
256(1)
3.6.2.8 Bottomhole pressure measurement and analysis
256(2)
3.6.3 Job Planning and Execution
258(1)
3.6.3.1 Job design
258(1)
3.6.3.2 Job execution
258(4)
3.6.4 Real-time Monitoring
262(1)
3.6.5 Operational Concerns
263(1)
3.6.5.1 Proppant flowback
263(2)
3.6.5.2 Flowback strategies
265(1)
3.6.6 Quality, Health, Safety and Environment Issues
266(1)
3.6.6.1 Quality assurance and quality control
266(1)
3.6.6.2 Safety considerations
266(1)
3.6.6.3 Environmental considerations
267(1)
3.6.7 Coiled Tubing Conveyed Fracture Treatments
267(3)
3.7 Fracturing Diagnostics
270(21)
3.7.1 Prediction
270(2)
3.7.2 Indirect Techniques
272(1)
3.7.2.1 Production data analysis
272(1)
3.7.2.2 Well testing
273(1)
3.7.2.3 Fracture modeling
274(1)
3.7.3 Direct Techniques
275(1)
3.7.3.1 Temperature survey
275(2)
3.7.3.2 Tracers
277(1)
3.7.3.3 Tiltmeter fracture mapping
278(7)
3.7.3.3.1 Surface tiltmeters
280(5)
3.7.3.3.2 Downhole tiltmeters
281(4)
3.7.3.3.3 Combination of surface and downhole tiltmeters
284(1)
3.7.3.4 Microseismic fracture imaging
285(6)
4 Formation Damage
291(52)
4.1 Introduction
291(1)
4.2 Skin Analysis
292(3)
4.2.1 Components of the Skin Effect
294(1)
4.2.2 Skin Effect Caused by Partial Completion and Slant
295(1)
4.2.3 Perforation Skin Effect
295(1)
4.3 Rock Composition and Mineralogy
295(2)
4.3.1 Types of Minerals
296(1)
4.3.2 Types of Rocks
297(1)
4.4 Clay
297(7)
4.4.1 Clay Structural Units
298(1)
4.4.2 Types of Clay
298(4)
4.4.3 Occurrence of Clays in Reservoirs
302(2)
4.5 Formation Damage Mechanism and Treatment Strategy
304(11)
4.6 Origin of Formation Damage and Remedial Measures
315(21)
4.7 Formation Damage Diagnosis
336(7)
4.7.1 Skin
336(1)
4.7.2 Flow Efficiency
336(1)
4.7.3 Pressure Transient Analysis
337(2)
4.7.4 Nodal Analysis
339(1)
4.7.5 Production Logging
339(1)
4.7.6 Laboratory Studies
339(4)
Index 343(2)
About the Authors 345
Mohammed Ismail Iqbal, Ministry of Manpower, Nizwa College of Technology, Oman