Muutke küpsiste eelistusi

E-raamat: Collaborative Computing: Networking, Applications and Worksharing: 18th EAI International Conference, CollaborateCom 2022, Hangzhou, China, October 15-16, 2022, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The two-volume set LNICST 460 and 461 constitutes the proceedings of the 18th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2022, held in Hangzhou, China, in October 2022. 

The 57 full papers presented in the proceedings were carefully reviewed and selected from 171 submissions. The papers are organized in the following topical sections: Recommendation System; Federated Learning and application; Edge Computing and Collaborative working; Blockchain applications; Security and Privacy Protection; Deep Learning and application; Collaborative working; Images processing and recognition.
Recommendation System.- A Negative Sampling-based Service
Recommendation Method.- Knowledge Graph Enhanced Web API Recommendation via
Neighbor Information Propagation for Multi service Application
Development.- Expertise-oriented Explainable Question Routing.- An API
Recommendation Method based on Beneficial Interaction.- A flow prediction
model of bike-sharing based on cycling context.- Federated Learning and
application.- FedFR: Evaluation and Selection of Loss Functions for Federated
Face Recognition.- FedCL: An Efficient Federated Unsupervised Learning
for Model Sharing in IoT.- Edge Federated Learning for Social Profit
Optimality: A Cooperative Game Approach.- MetaEM: Meta Embedding Mapping for
Federated Cross-Domain Recommendation to Cold-Start Users.- A Reliable
Service Function Chain Orchestration Method Based on Federated Reinforcement
Learning.- EdgeComputing and Collaborative working.- A Context-aware Approach
to Scheduling of Multi-Data- Source Tasks in Mobile Edge Computing.- Secure
and Private Coding for Edge Computing against Cooperative Attack with Low
Communication Cost and Computational Load.- Availability-Constrained
Application Deployment in Hybrid Cloud-Edge Collaborative Environment.- EBA:
An Adaptive Large Neighborhood Search-based Approach for Edge Bandwidth
Allocation.- System Completion Time Minimization with Edge Server Onboard
Unmanned Vehicle.- An approach to the synchronization of dynamic
complex network combining degree distribution and eigenvector criteria.- An
Energy-Saving Strategy for 5G Base Stations in Vehicular Edge Computing.- An
efficient scheduling strategy for containers based on Kubernetes.- NOMA-Based
Task Offloading and Allocation in Vehicular Edge Computing Networks.- A
Collaborative Graph Convolutional Networks and Learning Styles Model For
Courses Recommendation.- Exploring the Impact of Structural Holes on the
Value Creation in Service Ecosystems.- Learning Dialogue Policy Efficiently
Through Dyna Proximal Policy Optimization.- Self-Gated FM: Revisiting the
Weight of Feature Interactions for CTR Prediction.- Heterogeneous Graph
Neural Network-based Software Developer Recommendation.- Blockchain
applications.- FAV-BFT:An Efficient File Authenticity Verification Protocol
for Blockchain-based File-Sharing System.- Incentive Mechanism Design for
Uncertain Tasks in Mobile Crowd Sensing Systems Utilizing Smart Contract
in Blockchain.- Research on the Update Method of CP-ABE Access Control
Strategy based on Smart Contract.- Effective Blockchain-based Asynchronous
Federated Learning for Edge-computing.- One-Time Anonymous Certificateless
Signcryption Scheme Basedon Blockchain.