Muutke küpsiste eelistusi

E-raamat: Collaborative Computing: Networking, Applications and Worksharing: 19th EAI International Conference, CollaborateCom 2023, Corfu Island, Greece, October 4-6, 2023, Proceedings, Part II

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The three-volume set LNICST 561, 562  563 constitutes the refereed post-conference proceedings of the 19th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2023, held in Corfu Island, Greece, during October 4-6, 2023.

The 72 full papers presented in these proceedings were carefully reviewed and selected from 176 submissions. The papers are organized in the following topical sections:

Volume I : Collaborative Computing, Edge Computing & Collaborative working, Blockchain applications, Code Search and Completion, Edge Computing Scheduling and Offloading.

Volume II: Deep Learning and Application, Graph Computing, Security and Privacy Protection and Processing and Recognition.

Volume III: Onsite Session Day2, Federated learning and application, Collaborative working, Edge Computing and Prediction, Optimization and Applications.

Deep Learning and Application.- Task Offloading in UAV-to-Cell MEC
Networks: Cell Clustering and Path Planning.LAMB: Label-induced Mixed-level
Blending for Multimodal Multi-label Emotion Detection.- MSAM: Deep Semantic
Interaction Network for Visual Question Answering.- Defeating the
non-stationary opponent using deep reinforcement learning and opponent
modeling.- Multi-agent Deep Reinforcement Learning-based Approach to
Mobility-aware Caching.- D-AE: A Discriminant Encode-Decode Nets For Data
Generation.- ECCRG: A Emotion- and Content-controllable Response Generation
Model.- Origin-Destination Convolution Recurrent Network: A Novel OD Matrix
Prediction Framework.- MD-TransUNet: TransUNet with Multi-Attention and
Dilated Convolution for Brain Stroke Lesion Segmentation.- Graph Computing.-
DGFormer: An Effective Dynamic Graph Transformer based Anomaly Detection
Model for IoT Time Series.- STAPointGNN: Spatial-Temporal Attention Graph
Neural Network for Gesture Recognition Using Millimeter-Wave Radar.- NPGraph:
An Efficient Graph Computing Model in NUMA-Based Persistent Memory Systems.-
tHR-Net: A Hybrid Reasoning Framework for Temporal Knowledge Graph.-
Improving Code Representation Learning via Multi-view Contrastive Graph
Pooling for Abstract Syntax Tree.- Security and Privacy Protection.- Protect
applications and data in use in IoT environment using collaborative
computing.- Robustness-enhanced assertion generation method based on code
mutation and attack defense.- Secure Traffic Data Sharing in UAV-Assisted
VANETs.- A Lightweight PUF-Based Group Authentication Scheme for
Privacy-Preserving Metering Data Collection in Smart Grid.- A Semi-Supervised
Learning Method for Malware Traffic Classification with Raw Bitmaps.- Secure
and Private Approximated Coded Distributed Computing Using Elliptic Curve
Cryptography.- A Novel Semi-supervised IoT Time Series Anomaly Detection
Model using Graph Structure Learning.- Structural Adversarial Attack for Code
Representation Models.- An Efficient Authentication and Key Agreement Scheme
for CAV Internal Applications.- Processing and Recognition.- SimBPG: A
comprehensive similarity evaluation metric for business process graphs.-
Probabilistic Inference Based Incremental Graph Index for Similarity Search
on Social Networks.- Cloud-Edge-Device Collaborative Image Retrieval and
Recognition for Mobile Web.- Contrastive Learning-based Finger-Vein
Recognition with Automatic Adversarial Augmentation.- Multi-Dimensional
Sequential Contrastive Learning for QoS Prediction.