Muutke küpsiste eelistusi

E-raamat: Combinatorial Perspective on Quantum Field Theory

  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author"s biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are both physical insights and interesting mathematics.The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras. The remainder is broken into two parts. The first part looks at Dyson-Schwinger equations, stepping gradually from the purely combinatorial to the more physical. The second part looks at Feynman graphs and their periods.The flavour of the book will appeal to mathematicians with a combinatorics background as well as mathematical physicists and other mathematicians.

Part I Preliminaries.- Introduction.- Quantum field theory set up.- Combinatorial classes and rooted trees.- The Connes-Kreimer Hopf algebra.- Feynman graphs.- Part II Dyson-Schwinger equations.- Introduction to Dyson-Schwinger equations.- Sub-Hopf algebras from Dyson-Schwinger equations.- Tree factorial and leading log toys.- Chord diagram expansions.- Differential equations and the (next-to)m leading log expansion.- Part III Feynman periods.- Feynman integrals and Feynman periods.- Period preserving graph symmetries.- An invariant with these symmetries.- Weight.- The c2 invariant.- Combinatorial aspects of some integration algorithms.- Index.
Part I Preliminaries
1 Introduction
3(2)
2 Quantum Field Theory Set Up
5(4)
References
7(2)
3 Combinatorial Classes and Rooted Trees
9(10)
3.1 Combinatorial Classes and Augmented Generating Functions
9(5)
3.2 Combinatorial Specifications and Combinatorial Dyson-Schwinger Equations
14(5)
References
18(1)
4 The Connes-Kreimer Hopf Algebra
19(16)
4.1 Combinatorial Hopf Algebras
19(6)
4.2 The Connes-Kreimer Hopf Algebra of Rooted Trees
25(2)
4.3 Physical Properties
27(3)
4.4 Abstract Properties
30(5)
References
32(3)
5 Feynman Graphs
35(22)
5.1 Half Edge Graphs
35(2)
5.2 Combinatorial Physical Theories
37(3)
5.3 Renormalization Hopf Algebras
40(2)
5.4 Insertion and the Invariant Charge
42(6)
5.5 Graph Theory Tools
48(2)
5.6 Feynman Rules
50(7)
References
54(3)
Part II Dyson-Schwinger Equations
6 Introduction to Dyson-Schwinger Equations
57(4)
References
59(2)
7 Sub-Hopf Algebras from Dyson-Schwinger Equations
61(6)
7.1 Simple Tree Classes Which Are Sub-Hopf
61(2)
7.2 More Physical Situations
63(4)
References
65(2)
8 Tree Factorial and Leading Log Toys
67(4)
References
70(1)
9 Chord Diagram Expansions
71(10)
9.1 Converting the Dyson-Schwinger Equation to Differential Form
71(2)
9.2 Rooted Connected Chord Diagrams
73(2)
9.3 The s = 2, k = 1 Result
75(3)
9.4 Binary Trees and the General Result
78(3)
References
80(1)
10 Differential Equations and the (Next-To)m Leading Log Expansion
81(6)
10.1 The (Next-To)m Leading Log Expansions
81(1)
10.2 Combinatorial Expansions of the Log Expansions
82(5)
References
84(3)
Part III Feynman Periods
11 Feynman Integrals and Feynman Periods
87(6)
References
91(2)
12 Period Preserving Graph Symmetries
93(4)
12.1 Planar Duality: Fourier Transform
93(1)
12.2 Completion
94(1)
12.3 Schnetz Twist
94(1)
12.4 Products and Subdivergences
95(2)
References
96(1)
13 An Invariant with These Symmetries
97(4)
References
99(2)
14 Weight
101(8)
14.1 Denominator Reduction
101(3)
14.2 Weight Drop and Double Triangles
104(5)
References
106(3)
15 The c2 Invariant
109(4)
References
111(2)
16 Combinatorial Aspects of Some Integration Algorithms
113(4)
References
115(2)
Index 117