Muutke küpsiste eelistusi

E-raamat: Communication System Security

(National Institute of Standards and Technology, Gaithersburg, Maryland, USA), (University of Waterloo, Ontario, Canada)
  • Formaat - EPUB+DRM
  • Hind: 240,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Helping current and future system designers take a more productive approach in the field, Communication System Security shows how to apply security principles to state-of-the-art communication systems. The authors use previous design failures and security flaws to explain common pitfalls in security design.

Divided into four parts, the book begins with the necessary background on practical cryptography primitives. This part describes pseudorandom sequence generators, stream and block ciphers, hash functions, and public-key cryptographic algorithms.

The second part covers security infrastructure support and the main subroutine designs for establishing protected communications. The authors illustrate design principles through network security protocols, including transport layer security (TLS), Internet security protocols (IPsec), the secure shell (SSH), and cellular solutions.

Taking an evolutionary approach to security in todays telecommunication networks, the third part discusses general access authentication protocols, the protocols used for UMTS/LTE, the protocols specified in IETF, and the wireless-specific protection mechanisms for the air link of UMTS/LTE and IEEE 802.11. It also covers key establishment and authentication in broadcast and multicast scenarios.

Moving on to system security, the last part introduces the principles and practice of a trusted platform for communication devices. The authors detail physical-layer security as well as spread-spectrum techniques for anti-jamming attacks.

With much of the material used by the authors in their courses and drawn from their industry experiences, this book is appropriate for a wide audience, from engineering, computer science, and mathematics students to engineers, designers, and computer scientists. Illustrating security principles with existing protocols, the text helps readers understand the principles and practice of security analysis.

Arvustused

"For mathematicians, both students and researchers, the book gives comprehensive information about practical aspects of cryptography. Each chapter is supplied with an appropriate number of exercises. They are well chosen to demonstrate and clarify the considered topics. A rich (but not excessively large) bibliography is given at the end of each chapter. This organization of the book is quite handy for the reader." Nikolai L. Manev, Zentralblatt MATH 1263

Preface xvii
Acknowledgments xix
1 Introduction
1(14)
1.1 Nodes, Links, and Layers
1(2)
1.2 Information Security Objectives and Protection Mechanisms
3(5)
1.2.1 Confidentiality
4(2)
1.2.2 Integrity and Authenticity
6(2)
1.3 Trust Model
8(1)
1.4 Threat Model
9(2)
1.4.1 Computation Power of Attackers
9(1)
1.4.2 Physical Vulnerability
9(1)
1.4.3 Jamming and Intrusion
10(1)
1.4.4 The Man-in-the-Middle Attacks
10(1)
1.5 Communication System Security
11(4)
1.5.1 Trusted Platform
11(2)
1.5.2 Protected Communications
13(2)
I Practical Cryptography Primitives
15(206)
2 Pseudorandom Sequence Generators
19(72)
2.1 Feedback Shift Register Sequences
20(11)
2.1.1 Feedback Shift Registers
20(7)
2.1.2 Efficient Hardware Implementation for FSRs
27(1)
2.1.3 LFSR and m-Sequence Generators
27(4)
2.2 Linear Spans and Berlekamp-Massey Algorithm
31(6)
2.2.1 Discrepancy Sequences
32(1)
2.2.2 Updating LFSRs from Discrepancy
33(1)
2.2.3 Generation of a Discrepancy Table
34(2)
2.2.4 A Procedure of the BM Algorithm
36(1)
2.2.5 Linear Span Attacks
37(1)
2.3 Randomness Criteria of a PRSG
37(6)
2.3.1 Correlation Functions of Sequences
38(2)
2.3.2 Golomb's Randomness Postulates
40(2)
2.3.3 One-Time Pad and Randomness Criteria
42(1)
2.4 Randomness Properties of m-Sequences
43(2)
2.5 Nonlinear Generators
45(10)
2.5.1 Filtering Sequence Generators
46(3)
2.5.2 Combinatorial Sequence Generators
49(3)
2.5.3 Clock-Control Generators and Shrinking Generators
52(3)
2.6 Blum-Blum-Shub (BBS) Generators
55(2)
2.6.1 Scheme of x2 mod N Generator
55(1)
2.6.2 Randomness Properties of BBS Generators
56(1)
2.7 Security Modes of PRSGs
57(5)
2.7.1 Scrambler Mode for Randomization
57(3)
2.7.2 Scrambler Mode for Integrity Check
60(2)
2.8 Known Attacks
62(29)
2.8.1 Attacking Scenarios
62(1)
2.8.2 Correlation Attack
63(5)
2.8.3 A Glance at Algebraic Attacks
68(5)
2.8.4 Selective Discrete Fourier Transform (DFT) Attacks
73(8)
2.8.5 A General Model for Solving Equations Related Attacks
81(1)
Notes
82(1)
Exercises
83(4)
Bibliography
87(4)
3 Design of Stream Ciphers
91(52)
3.1 Design Principles of Stream Ciphers
92(4)
3.1.1 Two Phases in Stream Cipher
93(1)
3.1.2 Design Principles
94(1)
3.1.3 Finite State Machine and Stream Cipher
95(1)
3.2 Stream Ciphers in Communication Systems
96(11)
3.2.1 A5/1 in GSM System
97(4)
3.2.2 w7 -- An Analogue Cipher of A5/1
101(1)
3.2.3 E0 in Bluetooth Standard
102(3)
3.2.4 RC4 in WEP
105(2)
3.3 WG Stream Cipher
107(10)
3.3.1 Description of WG Cipher
109(3)
3.3.2 Key Initialization and Running Phases
112(1)
3.3.3 Randomness Properties of WG Ciphers
113(1)
3.3.4 A Concrete Design of WG(29, 11)
114(3)
3.4 Grain and Grain-Like Generators
117(5)
3.4.1 Grain 2 Key Stream Generator
117(3)
3.4.2 Grain-Like Generator Using NLFSR Masked by LFSR
120(2)
3.5 Trivium and Trivium-Like Generators
122(3)
3.5.1 Description of Trivium-Like Generator
122(2)
3.5.2 Key Initialization and IV in Trivium
124(1)
3.5.3 Periods of Trivium-Like Generator
124(1)
3.6 Snow 3G
125(4)
3.6.1 Description of Snow 3G
126(2)
3.6.2 Key Initialization and Running Phases
128(1)
3.6.3 Randomness Properties
129(1)
3.7 AIDA/Cube Attacks
129(14)
3.7.1 Reed-Muller Transform of Boolean Functions
130(1)
3.7.2 RMT Spectrum Used in AIDA/Cube Attacks
131(2)
3.7.3 Procedure of AIDA/Cube Attacks
133(2)
Notes
135(1)
Exercises
135(5)
Bibliography
140(3)
4 Design of Block Ciphers, Hash Functions, and MAC
143(42)
4.1 Design Principles of Block Ciphers
144(3)
4.1.1 Diffusion and Confusion in the Design of Block Ciphers
144(2)
4.1.2 Structure of Block Ciphers
146(1)
4.2 DES (Data Encryption Standard, NIST 1976)
147(8)
4.2.1 Permutations at Front-End and Key Schedule
147(2)
4.2.2 Feedback f and S-Boxes
149(3)
4.2.3 Spectral Properties of S-Box 3
152(1)
4.2.4 Triple-DES
153(2)
4.3 AES (Advanced Encryption Standard) Rijndael
155(7)
4.3.1 Rijndael's Operators
156(4)
4.3.2 Rijndael Encryption and Decryption
160(1)
4.3.3 Word-Operation of AES Rijndael
161(1)
4.4 Encryption Modes
162(3)
4.4.1 Block Cipher Modes
162(1)
4.4.2 Block Cipher Implemented as Stream Cipher Modes
163(2)
4.5 Hash Functions
165(5)
4.5.1 MD5 and SHAs
166(1)
4.5.2 Description of Secure Hash Algorithm (SHA-1)
167(3)
4.6 Message Authentication Code (MAC)
170(6)
4.6.1 Xor MAC
171(2)
4.6.2 CBC-MAC
173(1)
4.6.3 NMAC and HMAC
173(1)
4.6.4 Modes of Encryption and Authentication
174(1)
4.6.5 Conversions among Symmetric-Key Algorithms
175(1)
4.7 Birthday Attack and Time-Memory Trade-Off Attacks
176(9)
4.7.1 Birthday Problem
176(1)
4.7.2 Time-Memory Trade-off Attack
177(1)
Notes
177(1)
Exercises
178(2)
Bibliography
180(5)
5 Public-Key Cryptographic Algorithms
185(36)
5.1 Security of Public-Key Cryptography
186(1)
5.2 Diffie-Hellman Key Exchange
187(2)
5.3 RSA Encryption and Digital Signature
189(7)
5.3.1 Some Results in Number Theory
189(2)
5.3.2 RSA Encryption
191(2)
5.3.3 RSA Digital Signature Algorithm (RSA-DSA)
193(2)
5.3.4 Speed-Up RSA Using Chinese Remainder Theorem (CRT)
195(1)
5.4 ElGamal Digital Signature Algorithm and Digital Signature Standard
196(5)
5.4.1 ElGamal DSA
196(2)
5.4.2 How to Attack ElGamal DSA
198(1)
5.4.3 DSS (Digital Signature Standard)
199(2)
5.5 Elliptic Curve Digital Signature Algorithm (EC-DSA)
201(6)
5.5.1 Elliptic Curves over Finite Fields
202(3)
5.5.2 EC-DSA (IEEE P1363/D4, 1998)
205(2)
5.6 Identity-Based Cryptography from Bilinear Pairing
207(14)
5.6.1 Pre-Shared Secret Keys and Identity-Based Encryption Scheme
208(3)
5.6.2 Features of IBC
211(1)
5.6.3 Distinctive Features of IBC Schemes
211(2)
5.6.4 Key Escrow and Other Problems
213(1)
Notes
213(1)
Exercises
214(2)
Bibliography
216(5)
II Security Mechanisms and Protocols
221(102)
6 Security Infrastructure
225(16)
6.1 Infrastructure Support
225(1)
6.2 Authentication Server
226(4)
6.2.1 Entity Authentication
226(2)
6.2.2 Access Authentication and Backend Server
228(2)
6.3 Certificate Authority
230(4)
6.3.1 Public-Key Certificate
232(1)
6.3.2 Certificate Chain and Revocation
232(2)
6.4 Key Generation and Distribution Server
234(3)
6.4.1 Public/Private Key Pair Generation
234(1)
6.4.2 Key Escrow
235(1)
6.4.3 Symmetric Key Generation and Distribution
236(1)
6.5 Signing Server
237(4)
6.5.1 Signature for Authorized Software
237(1)
6.5.2 Signature for Copyrights
237(1)
Notes
238(1)
Exercises
238(1)
Bibliography
239(2)
7 Establish Protected Communications
241(32)
7.1 Mutual Authentication
242(10)
7.2 Key Establishment
252(9)
7.2.1 Authenticated Key Establishment
252(2)
7.2.2 Key Derivation and Key Confirmation
254(2)
7.2.3 Perfect Forward Secrecy
256(2)
7.2.4 Man-in-the-Middle Attack
258(1)
7.2.5 Key Agreement with Implicit Authentication
259(2)
7.3 Cryptographic Algorithm Negotiation
261(3)
7.4 Protected Communications
264(9)
Notes
267(1)
Exercises
268(3)
Bibliography
271(2)
8 Network Security Protocols
273(50)
8.1 Internet Security Protocols
274(17)
8.1.1 Security Associations (SAs)
275(1)
8.1.2 Internet Key Exchange Version 2 (IKEv2)
276(10)
8.1.3 IPsec Modes
286(2)
8.1.4 Authentication Header (AH)
288(1)
8.1.5 Encapsulating Security Payload (ESP)
289(2)
8.2 Transport Layer Security (TLS)
291(8)
8.2.1 TLS Handshake
292(1)
8.2.2 Hellos and TLS Cipher Suites
293(1)
8.2.3 KeyExchange and Key Establishment
294(2)
8.2.4 Certificate and Authentication
296(1)
8.2.5 Finished and Post-Verification
297(1)
8.2.6 Application Data Protection
297(1)
8.2.7 Use TLS to Secure HTTP
298(1)
8.3 The Secure Shell (SSH)
299(5)
8.3.1 SSH Transport Protocol
300(2)
8.3.2 Plaintext Recover Attacks against SSH
302(2)
8.4 Hop-by-Hop versus End-to-End Protection
304(5)
8.4.1 Hop-by-Hop Protection
307(1)
8.4.2 End-to-End Protection
308(1)
8.5 Intra-Domain versus Inter-Domain Protection
309(4)
8.5.1 Intra-Domain Protection
310(1)
8.5.2 Inter-Domain Protection
311(1)
8.5.3 Virtual Private Network (VPN)
312(1)
8.6 Network Domain Security in Cellular Systems
313(10)
8.6.1 Security Protocol for MAP (MAPsec)
315(1)
8.6.2 IP-Based Network Domain Security
316(1)
Notes
317(1)
Exercises
318(2)
Bibliography
320(3)
III Wireless Security
323(212)
9 Network Access Authentication
327(74)
9.1 Basic Concepts in Access Authentication
329(17)
9.1.1 Generalized Model for Access Authentication
330(1)
9.1.2 Point of Attachment (PoA)
331(1)
9.1.3 Access Authentication Methods
332(6)
9.1.4 Key Establishment and Key Hierarchy
338(6)
9.1.5 Practical Access Authentication Protocols
344(2)
9.2 Authentication and Key Agreement (AKA) in 3G and LTE
346(15)
9.2.1 UMTS Network Architecture
347(1)
9.2.2 Long-Term Credentials
348(1)
9.2.3 Authentication Vectors
348(3)
9.2.4 UMTS Access Authentication Protocol
351(2)
9.2.5 Sequence Number Resynchronization
353(1)
9.2.6 AKA in 3GPP2
354(1)
9.2.7 AKA Security Discussion
355(2)
9.2.8 AKA Evolution in LTE
357(4)
9.3 Authentication, Authorization, and Accounting (AAA)
361(14)
9.3.1 Remote Authentication Dial-In User Services (RADIUS)
362(1)
9.3.2 RADIUS Messages and Attributes
363(2)
9.3.3 RADIUS Protocol Protections
365(2)
9.3.4 Use RADIUS for PAP and CHAP
367(2)
9.3.5 Vulnerabilities, Challenges, Limitations, and Evolutions
369(2)
9.3.6 Diameter
371(4)
9.4 Extensible Authentication Protocol (EAP)
375(26)
9.4.1 EAP Entities and Messages
376(1)
9.4.2 EAP Transport Mechanisms in Pass-Through Mode
377(2)
9.4.3 EAP Exported Keys
379(1)
9.4.4 EAP-TLS
380(3)
9.4.5 EAP-AKA
383(3)
9.4.6 Tunneled EAP Methods
386(5)
9.4.7 EAP Security Claims and Pitfalls
391(2)
Notes
393(1)
Exercises
394(3)
Bibliography
397(4)
10 Wireless Network Security
401(38)
10.1 Special Aspects of Wireless Protection
402(3)
10.1.1 Key Establishment for Wireless Link
402(1)
10.1.2 Bandwidth Efficiency
403(1)
10.1.3 Throughput and Processing Efficiency
404(1)
10.1.4 Vulnerabilities
404(1)
10.2 UMTS and LTE Air Link Protection
405(15)
10.2.1 Protocol Structure and Protection Profile
406(3)
10.2.2 Secure Mode Setup
409(2)
10.2.3 Encryption of User Data and Control Signals
411(3)
10.2.4 Integrity Protection and Local Authentication
414(5)
10.2.5 Protections for LTE
419(1)
10.3 IEEE 802.11 Security Solutions
420(19)
10.3.1 Wired Equivalent Privacy (WEP)
422(4)
10.3.2 Authentication and Key Establishment
426(4)
10.3.3 Wireless Protection Mechanism -- CCMP
430(2)
10.3.4 TKIP for Backward Compatibility
432(2)
Notes
434(1)
Exercises
435(1)
Bibliography
436(3)
11 Security for Mobility
439(64)
11.1 Challenges in Establishing Protection for a Mobile Node
442(3)
11.2 Secure Handover in UMTS and LTE
445(3)
11.3 Options for Fast Authentication
448(11)
11.3.1 Pre-Authentication
449(3)
11.3.2 Re-Authentication
452(4)
11.3.3 Protection Setup and Session Key Derivation
456(1)
11.3.4 Applicable Scenarios for Fast Authentication
457(2)
11.4 Secure Fast BSS Transition in IEEE 802.11
459(9)
11.4.1 Key Hierarchy for Fast BSS Transition
461(2)
11.4.2 Fast BSS Transition
463(5)
11.5 Security in Mobile IP -- Mobility Information Protection
468(25)
11.5.1 Introduction to IP Routing and Mobile IP
468(4)
11.5.2 Security for Mobile IPv4
472(11)
11.5.3 Return Routability -- Security in Mobile IPv6
483(8)
11.5.4 Mobile IP Deployment and Proxy Mobile IP
491(2)
11.6 Media Independent Handover -- Service Protection
493(10)
11.6.1 Establish MIH Data Protection
495(2)
11.6.2 Rely on Protections Provided in Transport Protocols
497(1)
Notes
498(1)
Exercises
498(2)
Bibliography
500(3)
12 Broadcast and Multicast Key Distribution and Authentication
503(32)
12.1 Basic Models for Multicast Key Distribution
503(6)
12.1.1 Key Sharing Scenarios
505(2)
12.1.2 A Naive Protocol
507(2)
12.2 Logic Key Tree Based Multicast Key Distribution
509(14)
12.2.1 Basic Concepts of Graph Theory
510(1)
12.2.2 Tree Topology-Based Multicast Key Distribution Protocol
511(9)
12.2.3 Performance Evaluation
520(3)
12.3 Hash Chain Based Authentication
523(5)
12.3.1 Hash Chains
524(1)
12.3.2 Hash Chain Based Message Authentication
525(1)
12.3.3 Hash Chain Based Access Authentication
526(2)
12.4 Merkle Trees for Authentication
528(7)
Notes
531(1)
Exercises
532(1)
Bibliography
533(2)
IV System Security
535(162)
13 Trusted Platform
539(44)
13.1 The Platform
539(3)
13.2 Introduction to Trusted Platform
542(7)
13.2.1 Threats to a Platform
543(3)
13.2.2 Primary Objectives
546(2)
13.2.3 Challenges
548(1)
13.3 Trust Principles and Basic Mechanisms
549(11)
13.3.1 Root of Trust
549(1)
13.3.2 Transitive Trust Principle
550(1)
13.3.3 Secure Boot
551(4)
13.3.4 Validation and Authorization
555(1)
13.3.5 Authenticate to Remote Parties
556(4)
13.4 Technologies and Methodologies for Trusted Platforms
560(5)
13.4.1 One-Time Programmable Memory
561(1)
13.4.2 Tamper Response Hardware
562(1)
13.4.3 Secure Storage
562(1)
13.4.4 Protected Execution
563(2)
13.5 Trusted Platform in Practice
565(18)
13.5.1 Trusted Platform Module (TPM)
566(9)
13.5.2 Trusted Platform for Mobile Device
575(5)
Notes
580(1)
Exercises
580(1)
Bibliography
581(2)
14 Physical-Layer Security
583(36)
14.1 Shannon's Perfect Secrecy
585(4)
14.1.1 A Little Knowledge of Entropy Functions
585(2)
14.1.2 Shannon's Perfect Secrecy Channel
587(1)
14.1.3 Perfect Secrecy and Modern Cryptography
588(1)
14.1.4 Comparisons with Quantum Cryptography
589(1)
14.2 Wyner's Wiretap Channel
589(5)
14.2.1 Equivocation Rate
590(1)
14.2.2 Achievable Secrecy of Wiretap Channels
591(3)
14.3 Wiretap Codes for Achievable Secrecy Using Parity Check Codes
594(5)
14.3.1 Parity Sets
594(1)
14.3.2 Encoder and Decoder of Wiretap Parity Codes
595(1)
14.3.3 Equivocation Rate of Wiretap Parity Codes
596(3)
14.4 Wiretap Codes for Achievable Secrecy Using Linear Codes
599(12)
14.4.1 Some Basic Concepts about ECC
599(5)
14.4.2 Cosets of Linear Codes
604(1)
14.4.3 Encoder and Decoder of Wiretap Linear Codes
605(2)
14.4.4 Equivocation Rate of Wiretap Linear Codes
607(4)
14.5 Other Methods for Physical-Layer Security
611(8)
14.5.1 MIMO-Based Approaches
611(2)
14.5.2 Smart Antenna Approaches
613(1)
14.5.3 Exploiting Randomness of Signals and Channels
613(1)
Notes
614(1)
Exercises
614(2)
Bibliography
616(3)
15 Spread-Spectrum Techniques for Anti-Jamming-Attacks
619(78)
15.1 Some Basic Concepts of Digital Communications
620(11)
15.1.1 Digital Modulation Techniques
621(1)
15.1.2 Modulation and Demodulation
621(2)
15.1.3 Performance of Modulation Schemes
623(2)
15.1.4 Spread-Spectrum Systems
625(3)
15.1.5 Autocorrelation and Power Spectral Density of PN-Sequences
628(3)
15.2 BPSK Direct-Sequence Spread-Spectrum Systems
631(9)
15.2.1 DS-BPSK Signals and Bandwidth
632(3)
15.2.2 DS-BPSK Modulation and Demodulation
635(3)
15.2.3 Synchronization
638(2)
15.3 Frequency-Hopping Spread Spectrum
640(7)
15.3.1 FH-MFSK Signals and Frequency Hopping Sequences
641(1)
15.3.2 FH MFSK Modulation and Demodulation
642(1)
15.3.3 Examples of Slow FH and Fast FH Systems
642(5)
15.4 The Jamming Attacks
647(8)
15.4.1 Assumptions and Definitions of a Jamming Game
647(3)
15.4.2 Full Band and Partial Band Jamming Attacks
650(1)
15.4.3 Pulse Jamming Attacks
650(1)
15.4.4 Single Tone and Multitone Jamming Attacks
651(1)
15.4.5 Repeat-Back (or Reactive) Jamming Attacks
652(3)
15.5 Code-Division Multiple Access (CDMA) and Jamming Capacity
655(19)
15.5.1 Multiple Access Interference and System Models
656(2)
15.5.2 DS-CDMA Transmitters and Receivers
658(2)
15.5.3 Selection Criteria of Spreading PN Sequences
660(5)
15.5.4 Revisit of Countermeasures for Repeat-Back Jammers
665(2)
15.5.5 Interference Limitation and Jamming Capacity
667(2)
15.5.6 Random Code Spread-Spectrum Systems
669(1)
15.5.7 An Abstract Interpretation of Spread-Spectrum Systems
670(4)
15.6 Bloom Filters and Or-Channel Schemes
674(23)
15.6.1 Bloom Filters for Membership Verification
674(4)
15.6.2 Or-Channel Coding for Spread Spectrum without Pre-Shared PN Sequences
678(7)
15.6.3 Probability of Jamming Errors in Or-Channel Coding Schemes
685(3)
15.6.4 Some Comparisons with DS/DS-CDMA Systems
688(2)
Notes
690(1)
Exercises
691(4)
Bibliography
695(2)
APPENDICES
697(20)
A Computations in Finite Fields
699(8)
A.1 Prime Finite Fields
699(1)
A.2 Binary Extension Fields
700(2)
A.3 Properties of Finite Fields
702(1)
A.4 Trace Functions, Cosets, Relationship with m-Sequences and Subfields
703(3)
A.5 Finding a Primitive Polynomial over GF(2k) of Degree m by Factorization
706(1)
B Some Mathematical Formulae
707(2)
B.1 Number of Boolean Functions
707(1)
B.2 Computation of Euler Function
708(1)
B.3 Algebraic Immunity
708(1)
C Signals and Spectra in Physical Layer
709(8)
C.1 Deterministic Signals
709(1)
C.1.1 Energy and Power
709(1)
C.1.2 Linear Time Invariant Systems
710(1)
C.1.3 Fourier Transform
710(2)
C.1.4 Energy and Power Spectral Density
712(1)
C.1.5 Autocorrelation
713(1)
C.2 Random Signals
713(1)
C.2.1 Autocorrelation and Crosscorrelation of Random Processes
713(1)
C.2.2 Wide-Sense Stationary Processes
714(1)
C.2.3 Power Spectral Density of WSS Processes
714(1)
C.3 Definitions of the Bandwidth
715(2)
Index 717
Lidong Chen is a mathematician in the Computer Security Division of the National Institute of Standards and Technology. She earned a Ph.D. in applied mathematics from Aarhus University. Dr. Chen was an associate editor of IEEE Communications Letters and has been a program committee member for numerous conferences in cryptography and security. Her research areas include cryptographic protocols, network security, and security in wireless and mobile applications.

Guang Gong is a professor in the Department of Electrical and Computer Engineering at the University of Waterloo. She earned a Ph.D. in electrical engineering. Dr. Gong has been an associate editor of several journals, a co-chair and committee member of technical programs and conferences, and a recipient of awards such as the NSERC Discovery Accelerator Supplement Award and the Ontario Research Fund-Research Excellence Award. Her research interests are in the areas of sequence design, cryptography, and communication security.