Muutke küpsiste eelistusi

E-raamat: Commutative Algebras of Toeplitz Operators on the Bergman Space

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is devoted to the spectral theory of commutative C*-algebras of Toeplitz operators on the Bergman space and its applications. For each such commutative algebra there is a unitary operator which reduces Toeplitz operators from this algebra to certain multiplication operators, thus providing their spectral type representations. This yields a powerful research tool giving direct access to the majority of the important properties of the Toeplitz operators studied herein, such as boundedness, compactness, spectral properties, invariant subspaces. The presence and exploitation of these spectral type representations forms the core for many results presented in the book. Among other results it contains a criterion of when the algebras are commutative on each commonly considered weighted Bergman space together with their explicit descriptions; a systematic study of Toeplitz operators with unbounded symbols; a clarification of the difference between compactness of commutators and semi-commutators of Toeplitz operators; the theory of Toeplitz and related operators with symbols having more than two limit values at boundary points; and a kind of semi-classical analysis of spectral properties of Toeplitz operators.The book is addressed to a wide audience of mathematicians, from graduate students to researchers, whose primary interests lie in complex analysis and operator theory.

Arvustused

From the reviews:

This is a massive, detailed, and comprehensive book on the theory of Toeplitz operators and Toeplitz algebras . The book is quite easy to read and understand. Computations as well are explicit and detailed. Included Highlights of the chapters in addition to Preface and Introduction will be helpful for the readers to decide and read this book properly and effectively. Furthermore, Bibliographical Remarks for items in the Bibliography will also be helpful for further reading. (Takahiro Sudo, Zentralblatt MATH, Vol. 1168, 2009)

Preface ix
Introduction xi
Highlights of the
Chapters
xv
Preliminaries
1(32)
General local principles for C*-algebras
1(13)
C*-Algebras generated by orthogonal projections
14(19)
Prologue
33(32)
On the term ``symbol''
33(1)
Bergman space and Bergman projection
34(4)
Representation of the Bergman Kernel function
38(4)
Some integral operators and representation of the Bergman projection
42(3)
``Continuous''theory and local properties of the Bergman projection
45(5)
Model discontinuous case
50(3)
Symbol algebra
53(4)
Toeplitz operators
57(4)
Some further results on compactness
61(4)
Bergman and Poly-Bergman Spaces
65(24)
Bergman space and Bergman projection
66(5)
Connections between Bergman and Hardy Spaces
71(2)
Poly-Bergman spaces, decomposition of L2 (II)
73(3)
Projections onto the poly-Bergman spaces
76(6)
Poly-Bergman spaces and two-dimensional singular integral operators
82(7)
Bergman Type Spaces on the Unit Disk
89(12)
Bergman space and Bergman projection
89(7)
Poly-Bergman type spaces, decomposition of L2 (D)
96(5)
Toeplitz Operators with Commutative Symbol Algebras
101(20)
Semi-commutator versus commutator
102(3)
Infinite dimensional representations
105(5)
Spectra and compactness
110(4)
Finite dimensional representations
114(2)
General case
116(5)
Toeplitz Operators on the Unit Disk with Radial Symbols
121(14)
Toeplitz operators with radial symbols
122(10)
Algebras of Toeplitz operators
132(3)
Toeplitz Operators on the Upper Half Plane with Homogeneous Symbols
135(40)
Representation of the Bergman space
135(3)
Toeplitz operators with homogeneous symbols
138(8)
Bergman projection and homogeneous functions
146(5)
Algebra generated by the Bergman projection and discontinuous coefficients
151(7)
Some particular cases
158(4)
Toeplitz operator algebra. A first look
162(3)
Toeplitz operator algebra. Some more analysis
165(10)
Anatomy of the Algebra Generated by Toeplitz Operators with Piece-wise Continuous Symbols
175(40)
Symbol class and operators
177(1)
Algebra T (PC (-D, T)
178(2)
Operators of the algebra T (PC (D, T)
180(3)
Topelitz operators of the algebra T (PC (D, T)
183(4)
More Toeplitx operators
187(11)
Semi-commutators involving unbounded symbols
198(8)
Toeplitz or not Toeplitz
206(3)
Technical statements
209(6)
Communting Toeplitx Operators and Hyperbolic Geopmetry
215(18)
Bergman metric
216(1)
Basic properties of Mobius transforamtions
217(3)
Fixe points and communting Mobius transformations
220(1)
Elements of Hyperbolic geometry
221(3)
Action of Mobius transformations
224(2)
Classification theorem
226(2)
Proof of the classification theorem
228(5)
Weighted Bergman Spaces
233(30)
Unit disk
233(4)
Upper half-plane
237(3)
Represnetations od the weighted Bergman space
240(10)
Model classes of Topelitz operators
250(10)
Boundedness, spectra, and invariant subspaces
260(3)
Commutative Algebras of Toeplitz Operators
263(30)
On SYmbol Classes
264(3)
Commutativity on a single Bergman space
267(3)
Commutativity on each weighted Bergmand space
270(2)
First term:gradietn an level lines
272(3)
Secodn term:gradient lines are geodesics
275(3)
Curves with constant geodesic curvature
278(7)
Third term:level lines are cycles
285(5)
Commutative Toeplits operator algebras and pencils of geodescis
290(3)
Dynamics of Properties of Toeplitx Operators with Radial Symbols
293(36)
Boundedness and compactness properties
294(11)
Schatten classes
305(9)
Specta of Toeplitx operators, continuous symbols
314(4)
Spectra of Toeplitz operators, piece-wise continuous symobols
318(6)
Spectra of Toeplitx operators, unbounded symbols
324(5)
Dynamics of Properties of Toeplitz operators on theUpper Half Plane:Parabolic case
329(20)
Boundedness ot Topelitx operators with symbols depending on y=Imz
329(10)
Continuous symbols
339(2)
Piece-wise continuous symbols
341(2)
Oscillating symbols
343(2)
Unbounded symbols
345(4)
Dynamics of Properties of Toeplitd operator onthe Upper Half Plane:Hyperbolic case
349(12)
Boundedness of Toeplitz operators with symbols depending on θ=arg z
349(4)
Continuous symbols
353(2)
Piece-wise continuous symbols
355(3)
Unbounded symbols
358(3)
Appendices
361(30)
A Coherent states and Berezin transform
361(12)
A.1 General appraoh to coherent states
361(4)
A.2 Numerical range and spectra
365(2)
A.3 Coherent states in the Bergman space
367(1)
A.4 Berezin transform
368(5)
B Berezin Quantization on the Unit Disk
373(18)
B.1 Definition of the quantization
373(2)
B.2 Quantization on the unit disk
375(1)
B.3 Two first terms of asymptotic of the Wick symbol
376(4)
B.4 Three first terms of asymptotic in a commutator
380(11)
Bibliographical Remarks 391(6)
Bibliography 397(16)
List of Figures 413(2)
Index 415