Muutke küpsiste eelistusi

E-raamat: Compactifications, Configurations, and Cohomology

Edited by , Edited by
  • Formaat: 157 pages
  • Sari: Contemporary Mathematics
  • Ilmumisaeg: 24-Dec-2023
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470474577
  • Formaat - PDF+DRM
  • Hind: 165,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 157 pages
  • Sari: Contemporary Mathematics
  • Ilmumisaeg: 24-Dec-2023
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470474577

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume contains the proceedings of the Conference on Compactifications, Configurations, and Cohomology, held from October 22-24, 2021, at Northeastern University, Boston, MA. Some of the most active and fruitful mathematical research occurs at the interface of algebraic geometry, representation theory, and topology. Noteworthy examples include the study of compactifications in three specific settings--algebraic group actions, configuration spaces, and hyperplane arrangements. These three types of compactifications enjoy common structural features, including relations to root systems, combinatorial descriptions of cohomology rings, the appearance of iterated blow-ups, the geometry of normal crossing divisors, and connections to mirror symmetry in physics. On the other hand, these compactifications are often studied independently of one another. The articles focus on new and existing connections between the aforementioned three types of compactifications, thereby setting the stage for further research. It draws on the discipline-specific expertise of all contributors, and at the same time gives a unified, self-contained reference for compactifications and related constructions in different contexts.
A. Balibanu, A quasi-Poisson structure on the multiplicative
Grothendieck-Springer resolution; P. Brosnan, Volumes of definable sets in
o-minimal expansions and affine GAGA theorems; P. Crooks and R. Roser,
Hessenberg varieties and Poisson slices; G. Denham and A. Steiner, Geometry
of logarithmic derivations of hyperplane arrangements; I. Halacheva, Shift of
argument algebras and de Concini-Procesi spaces; B. Knudsen, Projection
spaces and twisted Lie algebras; A. I. Suciu, Cohomology, Bocksteins, and
resonance varieties in characteristic 2.
Peter Crooks, Utah State University, Logan, UT.

Alexandru I. Suciu, Northeastern University, Boston, MA.