Muutke küpsiste eelistusi

E-raamat: Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab

(City University London), (Lehigh University, Pennsylvania)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-Mar-2009
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511501340
  • Formaat - PDF+DRM
  • Hind: 146,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-Mar-2009
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511501340

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A Compendium of Partial Differential Equation Models presents numerical methods and associated computer codes in Matlab for the solution of a spectrum of models expressed as partial differential equations (PDEs), one of the mostly widely used forms of mathematics in science and engineering. The authors focus on the method of lines (MOL), a well-established numerical procedure for all major classes of PDEs in which the boundary value partial derivatives are approximated algebraically by finite differences. This reduces the PDEs to ordinary differential equations (ODEs) and thus makes the computer code easy to understand, implement, and modify. Also, the ODEs (via MOL) can be combined with any other ODEs that are part of the model (so that MOL naturally accommodates ODE/PDE models). This book uniquely includes a detailed line-by-line discussion of computer code as related to the associated equations of the PDE model.

Presents numerical methods and computer code in Matlab for the solution of ODEs and PDEs with detailed line-by-line discussion.

Arvustused

'The presented book is very interesting not only for students in applied mathematics, physics and engineering, but also for their teachers and can act as an effective and useful motivation in their work.' Zentralblatt MATH

Muu info

Presents numerical methods and computer code in Matlab for the solution of ODEs and PDEs with detailed line-by-line discussion.
Preface ix
An Introduction to the Method of Lines
1(17)
A One-Dimensional, Linear Partial Differential Equation
18(18)
Green's Function Analysis
36(34)
Two Nonlinear, Variable-Coeffcient, Inhomogeneous Partial Differential Equations
70(20)
Euler, Navier Stokes, and Burgers Equations
90(24)
The Cubic Schrodinger Equation
114(27)
The Korteweg-deVries Equation
141(30)
The Linear Wave Equation
171(32)
Maxwell's Equations
203(26)
Elliptic Partial Differential Equations: Laplace's Equation
229(32)
Three-Dimensional Partial Differential Equation
261(30)
Partial Differential Equation with a Mixed Partial Derivative
291(15)
Simultaneous, Nonlinear, Two-Dimensional Partial Differential Equations in Cylindrical Coordinates
306(36)
Diffusion Equation in Spherical Coordinates
342(39)
Appendix 1 Partial Differential Equations from Conservation Principles: The Anisotropic Diffusion Equation 381(17)
Appendix 2 Order Conditions for Finite-Difference Approximations 398(16)
Appendix 3 Analytical Solution of Nonlinear, Traveling Wave Partial Differential Equations 414(6)
Appendix 4 Implementation of Time-Varying Boundary Conditions 420(21)
Appendix 5 The Differentiation in Space Subroutines Library 441(4)
Appendix 6 Animating Simulation Results 445(24)
Index 469
William E. Schiesser is the Emeritus R. L. McCann Professor of Chemical Engineering and a Professor of Mathematics at Lehigh University. He is also a visiting professor at the University of Pennsylvania and the co-author of the Cambridge book Computational Transport Phenomena. Graham W. Griffiths is a visiting professor in the School of Engineering and Mathematical Sciences of City University, London, having previously been a senior visiting Fellow. He is also a founder of Special Analysis and Simulation Technology Ltd and has worked extensively in, and researched into, the field of dynamic simulation of chemical processes.