Muutke küpsiste eelistusi

E-raamat: Complex Analysis: A Modern First Course in Function Theory

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 26-May-2015
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118705278
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 99,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 26-May-2015
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118705278
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject

Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic functions, including the Cauchy theory and residue theorem. The book concludes with a treatment of harmonic functions and an epilogue on the Riemann mapping theorem.

Thoroughly classroom tested at multiple universities, Complex Analysis: A Modern First Course in Function Theory features:





Plentiful exercises, both computational and theoretical, of varying levels of difficulty, including several that could be used for student projects Numerous figures to illustrate geometric concepts and constructions used in proofs Remarks at the conclusion of each section that place the main concepts in context, compare and contrast results with the calculus of real functions, and provide historical notes Appendices on the basics of sets and functions and a handful of useful results from advanced calculus

Appropriate for students majoring in pure or applied mathematics as well as physics or engineering, Complex Analysis: A Modern First Course in Function Theory is an ideal textbook for a one-semester course in complex analysis for those with a strong foundation in multivariable calculus. The logically complete book also serves as a key reference for mathematicians, physicists, and engineers and is an excellent source for anyone interested in independently learning or reviewing the beautiful subject of complex analysis.  

 

Arvustused

"The textbook is appropriate for students and can serve as a key reference for anyone interested in learning or reviewing the theory of complex functions of a complex variable." (Zentralblatt MATH, 2016)

Preface ix
1 The Complex Numbers
1(28)
1.1 Why?
1(2)
1.2 The Algebra of Complex Numbers
3(4)
1.3 The Geometry of the Complex Plane
7(2)
1.4 The Topology of the Complex Plane
9(7)
1.5 The Extended Complex Plane
16(2)
1.6 Complex Sequences
18(6)
1.7 Complex Series
24(5)
2 Complex Functions and Mappings
29(58)
2.1 Continuous Functions
29(5)
2.2 Uniform Convergence
34(4)
2.3 Power Series
38(5)
2.4 Elementary Functions and Euler's Formula
43(7)
2.5 Continuous Functions as Mappings
50(3)
2.6 Linear Fractional Transformations
53(11)
2.7 Derivatives
64(6)
2.8 The Calculus of Real-Variable Functions
70(5)
2.9 Contour Integrals
75(12)
3 Analytic Functions
87(40)
3.1 The Principle of Analyticity
87(2)
3.2 Differentiable Functions are Analytic
89(11)
3.3 Consequences of Goursat's Theorem
100(4)
3.4 The Zeros of Analytic Functions
104(4)
3.5 The Open Mapping Theorem and Maximum Principle
108(5)
3.6 The Cauchy--Riemann Equations
113(4)
3.7 Conformal Mapping and Local Univalence
117(10)
4 Cauchy's Integral Theory
127(18)
4.1 The Index of a Closed Contour
127(6)
4.2 The Cauchy Integral Formula
133(6)
4.3 Cauchy's Theorem
139(6)
5 The Residue Theorem
145(38)
5.1 Laurent Series
145(7)
5.2 Classification of Singularities
152(6)
5.3 Residues
158(7)
5.4 Evaluation of Real Integrals
165(9)
5.5 The Laplace Transform
174(9)
6 Harmonic Functions and Fourier Series
183(44)
6.1 Harmonic Functions
183(8)
6.2 The Poisson Integral Formula
191(10)
6.3 Further Connections to Analytic Functions
201(9)
6.4 Fourier Series
210(17)
Epilogue
227(28)
A Sets and Functions
239(8)
B Topics from Advanced Calculus
247(8)
References 255(2)
Index 257
Jerry R. Muir, Jr., PhD, is Professor of Mathematics at The University of Scranton. He has authored over one dozen research articles in complex-flavored analysis, primarily on geometric function theory in several complex variables.