|
1 Potential Theory in Practical Engineering |
|
|
1 | (18) |
|
|
2 | (7) |
|
1.1.1 Continuity Equation |
|
|
2 | (2) |
|
|
4 | (1) |
|
1.1.3 Discharge and Circulation |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.1.5 Flow in Porous Media |
|
|
7 | (2) |
|
1.2 Physical Processes in Potential Theory |
|
|
9 | (2) |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.2.3 Gravitational Fields |
|
|
10 | (1) |
|
1.2.4 Electrostatic Fields |
|
|
11 | (1) |
|
|
11 | (8) |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.3.3 Equipotential Lines |
|
|
13 | (1) |
|
1.3.4 Principle of Superposition |
|
|
14 | (5) |
|
2 Complex Potential and Differentiation |
|
|
19 | (62) |
|
|
20 | (12) |
|
|
20 | (1) |
|
2.1.2 Algebraic Properties |
|
|
21 | (1) |
|
|
22 | (2) |
|
2.1.4 Polar Form of Complex Numbers |
|
|
24 | (2) |
|
2.1.5 Exponential Form of Complex Numbers |
|
|
26 | (2) |
|
|
28 | (4) |
|
2.2 Functions of a Complex Variable |
|
|
32 | (3) |
|
|
32 | (1) |
|
2.2.2 Elementary Functions |
|
|
33 | (2) |
|
2.3 Complex Differentiation |
|
|
35 | (13) |
|
2.3.1 Limit and Continuity |
|
|
35 | (2) |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
40 | (2) |
|
2.3.5 Cauchy---Riemann Equations in Cartesian Form |
|
|
42 | (4) |
|
2.3.6 Cauchy---Riemann Equations in Polar Form |
|
|
46 | (2) |
|
|
48 | (5) |
|
2.4.1 Analyticity of Elementary Functions |
|
|
48 | (1) |
|
2.4.2 Laplace's Equation in Cartesian Form |
|
|
49 | (1) |
|
2.4.3 Laplace's Equation in Polar Form |
|
|
50 | (1) |
|
|
51 | (2) |
|
2.5 Stream Function and Complex Potential |
|
|
53 | (12) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (2) |
|
|
58 | (7) |
|
2.6 Further Topics in Complex Potential |
|
|
65 | (16) |
|
2.6.1 Orthogonal Families |
|
|
65 | (3) |
|
2.6.2 Streamlines as Impermeable Boundaries |
|
|
68 | (2) |
|
2.6.3 Discharge and Stream Function |
|
|
70 | (3) |
|
2.6.4 Circulation and Velocity Potential |
|
|
73 | (2) |
|
|
75 | (1) |
|
|
76 | (5) |
|
3 Transformation and Conformal Mapping |
|
|
81 | (48) |
|
3.1 Analytic Function and Mapping |
|
|
82 | (9) |
|
3.1.1 Analyticity and Conformality |
|
|
82 | (6) |
|
3.1.2 General Transformations |
|
|
88 | (3) |
|
3.2 Mapping by Elementary Functions |
|
|
91 | (8) |
|
|
91 | (2) |
|
|
93 | (2) |
|
|
95 | (1) |
|
3.2.4 Exponential Function |
|
|
96 | (1) |
|
3.2.5 Logarithmic Function |
|
|
97 | (2) |
|
3.3 Applications of Conformal Mapping |
|
|
99 | (11) |
|
|
99 | (4) |
|
3.3.2 Joukowski Transformation |
|
|
103 | (7) |
|
3.4 Mobius Transformation |
|
|
110 | (11) |
|
3.4.1 Extended Complex Plane |
|
|
110 | (3) |
|
|
113 | (1) |
|
|
114 | (7) |
|
3.5 Schwarz---Christoffel Transformation |
|
|
121 | (8) |
|
3.5.1 The Real Axis and a Polygon |
|
|
121 | (3) |
|
3.5.2 Transformation in Integral Form |
|
|
124 | (1) |
|
3.5.3 Parametric Equations for Flow Profiles |
|
|
125 | (4) |
|
4 Boundary Value Problems and Integration |
|
|
129 | (48) |
|
4.1 Boundary Value Problems |
|
|
130 | (4) |
|
4.1.1 Domain and Boundary |
|
|
130 | (2) |
|
4.1.2 Boundary Conditions in Engineering Problems |
|
|
132 | (1) |
|
4.1.3 Boundary Conditions in Complex Analysis |
|
|
133 | (1) |
|
|
134 | (16) |
|
|
135 | (1) |
|
|
136 | (2) |
|
|
138 | (4) |
|
4.2.4 Cauchy's Integral Theorem |
|
|
142 | (4) |
|
4.2.5 Cauchy's Integral Formula |
|
|
146 | (4) |
|
4.3 Complex Variable Boundary Element Method |
|
|
150 | (9) |
|
4.3.1 Mathematical Preliminaries of the CVBEM |
|
|
150 | (1) |
|
|
151 | (4) |
|
4.3.3 Cauchy's Integral Formula in Discretized Form |
|
|
155 | (1) |
|
|
156 | (3) |
|
4.4 Formulations of the CVBEM |
|
|
159 | (9) |
|
4.4.1 Known-Variable Equivalence |
|
|
160 | (3) |
|
4.4.2 Unknown-Variable Equivalence |
|
|
163 | (3) |
|
4.4.3 Dual-Variable Equivalence |
|
|
166 | (2) |
|
|
168 | (9) |
|
4.5.1 Mean Value Properties |
|
|
169 | (1) |
|
4.5.2 Maximum Modulus Theorem |
|
|
169 | (8) |
|
|
177 | (66) |
|
|
178 | (3) |
|
5.1.1 Convergence of Sequences |
|
|
178 | (1) |
|
5.1.2 Convergence of Series |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (6) |
|
|
181 | (3) |
|
5.2.2 Special Taylor Series |
|
|
184 | (1) |
|
5.2.3 Uniqueness of Taylor Series Expansions |
|
|
185 | (2) |
|
|
187 | (7) |
|
|
188 | (5) |
|
5.3.2 Uniqueness of Laurent Series Expansions |
|
|
193 | (1) |
|
5.4 Singularities and Zeros |
|
|
194 | (8) |
|
5.4.1 Classification of Singularities |
|
|
194 | (3) |
|
5.4.2 Zeros of Analytic Functions |
|
|
197 | (2) |
|
|
199 | (3) |
|
|
202 | (19) |
|
|
202 | (2) |
|
|
204 | (3) |
|
|
207 | (2) |
|
5.5.4 Residue Integration of Real Integrals |
|
|
209 | (12) |
|
5.6 Applications of Laurent Series |
|
|
221 | (10) |
|
5.6.1 Flow Through a Distorted Circle |
|
|
221 | (3) |
|
5.6.2 Flow Around a Source-Sink Pair |
|
|
224 | (7) |
|
5.7 Implicit Singularity Programming |
|
|
231 | (12) |
|
5.7.1 Flow Through a Finite Conductivity Fracture |
|
|
231 | (1) |
|
5.7.2 Singular Solution of Fractures |
|
|
232 | (2) |
|
5.7.3 Procedure and Formulation |
|
|
234 | (6) |
|
5.7.4 Flow Over a Thin Shield |
|
|
240 | (3) |
|
6 Further Applications in Practical Engineering |
|
|
243 | (38) |
|
6.1 Explicit Singularity Programming |
|
|
244 | (13) |
|
6.1.1 Singular Solution of Sources and Sinks |
|
|
244 | (1) |
|
6.1.2 Procedure and Formulation |
|
|
245 | (1) |
|
6.1.3 Branch Cuts Across a Boundary |
|
|
246 | (7) |
|
6.1.4 Logarithmic Singularity on a Boundary |
|
|
253 | (4) |
|
6.2 Generalized Singularity Programming |
|
|
257 | (6) |
|
6.2.1 Commingled Singularities |
|
|
258 | (1) |
|
|
259 | (4) |
|
|
263 | (18) |
|
6.3.1 Velocity Vector Method |
|
|
263 | (2) |
|
6.3.2 Stream Function Method |
|
|
265 | (2) |
|
6.3.3 Evaluation of Complex Velocities |
|
|
267 | (1) |
|
6.3.4 Streamlines Through Fractures |
|
|
268 | (1) |
|
|
269 | (2) |
|
6.3.6 Streamline Simulation |
|
|
271 | (10) |
Appendix A Vector Operator |
|
281 | (4) |
Appendix B Relevant Theorems |
|
285 | (4) |
Appendix C Conservative Field |
|
289 | (2) |
Appendix D Coefficients in Singularity Programming |
|
291 | (6) |
Appendix E Example Computation of the CVBEM |
|
297 | (6) |
References |
|
303 | (2) |
Index |
|
305 | |