Muutke küpsiste eelistusi

E-raamat: Complex Analysis Problem Book

  • Formaat: PDF+DRM
  • Ilmumisaeg: 26-Oct-2016
  • Kirjastus: Birkhauser Verlag AG
  • Keel: eng
  • ISBN-13: 9783319421810
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 98,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 26-Oct-2016
  • Kirjastus: Birkhauser Verlag AG
  • Keel: eng
  • ISBN-13: 9783319421810
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This second edition presents a collection of exercises on the theory of analytic functions, including completed and detailed solutions. It introduces students to various applications and aspects of the theory of analytic functions not always touched on in a first course, while also addressing topics of interest to electrical engineering students (e.g., the realization of rational functions and its connections to the theory of linear systems and state space representations of such systems). It provides examples of important Hilbert spaces of analytic functions (in particular the Hardy space and the Fock space), and also includes a section reviewing essential aspects of topology, functional analysis and Lebesgue integration.Benefits of the 2nd editionRational functions are now covered in a separate chapter. Further, the section on conformal mappings has been expanded. This second edition presents a collection of exercises on the theory of analytic functions, including completed

and detailed solutions. It introduces students to various applications and aspects of the theory of analytic functions not always touched on in a first course, while also addressing topics of interest to electrical engineering students (e.g., the realization of rational functions and its connections to the theory of linear systems and state space representations of such systems). It provides examples of important Hilbert spaces of analytic functions (in particular the Hardy space and the Fock space), and also includes a section reviewing essential aspects of topology, functional analysis and Lebesgue integration.Benefits of the 2nd editionRational functions are now covered in a separate chapter. Further, the section on conformal mappings has been expanded.

Part I Complex Numbers.- Complex Numbers: Algebra.- Complex Numbers: Geometry.- Complex Numbers and Analysis.- Part II Functions of a Complex Variable.- Cauchy-Riemann Equations and C-differentiable Functions.- Cauchy"sTheorem.- Morera, Liouville, Schwarz, et les autres: First Applications.- Laurent Expansions, Residues, Singularities and Applications.- Computations of Definite Integrals Using the Residue Theorem.- Part III Applications and More Advanced Topics.- Harmonic Functions.- Conformal Mappings.- A Taste of Linear System Theory and Signal Processing.- Rational Functions.- Special Functions and Transforms.- Part IV Appendix.- Some Topology.- Some Functional Analysis Essentials.- A Brief Survey of Integration.

Arvustused

This update to the first edition is a well-organized compilation of more than 475 challenging exercises with thorough solutions that assist with the study of analytic functions. The new edition contains several new chapters with updated content. This book will be a welcome addition to the personal library of readers with a strong foundation in mathematics. Summing Up: Recommended. Upper-division undergraduates and above; faculty and professionals. (D. P. Turner, Choice, Vol. 54 (11), July, 2017)

This volume is a collection of exercises in the theory of analytic functions, with complete and detailed solutions. The reviewer considers that the book can be used as a primary text for a course in complex analysis. A reader of the full book will know the basic of one complex variable theory and will have seen it integrated into mathematics as a whole. Research mathematicians will discover several novel perspectives. (Viceniu D. Rdulescu, zbMATH 1356.30001, 2017)

Prologue 1(10)
Part I Complex Numbers
1 Complex Numbers: Algebra
1.1 First properties of the complex numbers
11(11)
1.2 The exponential function
22(5)
1.3 Computing some sums
27(3)
1.4 Confinement lemma and other bounds
30(1)
1.5 Polynomials
31(3)
1.6 Solutions
34(31)
2 Complex Numbers: Geometry
2.1 Geometric interpretation
65(3)
2.2 Circles and lines and geometric sets
68(2)
2.3 Moebius maps
70(4)
2.4 Solutions
74(19)
3 Complex Numbers and Analysis
3.1 Complex-valued functions on an interval; derivatives and integrals
93(5)
3.2 Sequences of complex numbers
98(2)
3.3 Series of complex numbers
100(2)
3.4 Power series and elementary functions
102(7)
3.5 Abel's theorem and behaviour on the boundary
109(3)
3.6 Summable families
112(1)
3.7 Infinite products
113(9)
3.8 Multiplicable families
122(1)
3.9 Solutions
123(28)
Part II Functions of a Complex Variable
4 Cauchy--Riemann Equations and C-differentiable Functions
4.1 Continuous functions
151(6)
4.2 Derivatives
157(8)
4.3 Various counterexamples
165(1)
4.4 Analytic functions
166(9)
4.5 Solutions
175(34)
5 Cauchy's Theorem
5.1 Line integrals
209(4)
5.2 The fundamental theorem of calculus for holomorphic functions
213(4)
5.3 Computations of integrals
217(3)
5.4 Riemann's removable singularities theorem (Hebbarkeitssatz)
220(2)
5.5 Cauchy's formula and applications
222(7)
5.6 Power series expansions of analytic functions
229(4)
5.7 Primitives and logarithm
233(5)
5.8 Analytic square roots
238(1)
5.9 Solutions
239(54)
6 Morera, Liouville, Schwarz, et les autres: First Applications
6.1 Zeroes of analytic functions
293(3)
6.2 Morera's theorem
296(1)
6.3 Analytic continuation
297(4)
6.4 The maximum modulus principle
301(1)
6.5 Schwarz' lemma
301(5)
6.6 Series of analytic functions
306(1)
6.7 Analytic functions as infinite products
307(1)
6.8 Liouville's theorem and the fundamental theorem of algebra
308(4)
6.9 Solutions
312(26)
7 Laurent Expansions, Residues, Singularities and Applications
7.1 Laurent expansions
338(3)
7.2 Singularities
341(4)
7.3 Residues and the residue theorem
345(6)
7.4 Rouche's theorem
351(1)
7.5 Solutions
352(29)
8 Computations of Definite Integrals Using the Residue Theorem
8.1 Integrals on the real line of rational functions
381(3)
8.2 Rational multiplied by trigonometric
384(2)
8.3 Integrals of rational functions on a half-line
386(3)
8.4 Integrals of rational expressions of the trigonometric functions
389(1)
8.5 Other examples
390(3)
8.6 Solutions
393(24)
Part III Applications and More Advanced Topics
9 Harmonic Functions
9.1 Harmonic functions
417(2)
9.2 Harmonic conjugate
419(3)
9.3 Various
422(2)
9.4 The Dirichlet problem
424(1)
9.5 Solutions
425(18)
10 Conformal Mappings
10.1 Uniform convergence on compact sets
443(1)
10.2 One-to-oneness
444(2)
10.3 Conformal mappings
446(3)
10.4 Solutions
449(8)
11 A Taste of Linear System Theory and Signal Processing
11.1 Continuous signals
457(1)
11.2 Sampling
458(2)
11.3 Time-invariant causal linear systems
460(2)
11.4 Discrete signals and systems
462(1)
11.5 The Schur algorithm
463(4)
11.6 Solutions
467(7)
12 Rational Functions
12.1 First properties
474(2)
12.2 Realizations of rational functions
476(3)
12.3 Multipoint interpolation
479(1)
12.4 Solutions
480(11)
13 Special Functions and Transforms
13.1 Elliptic functions
491(1)
13.2 The v function
492(1)
13.3 An application to periodic entire functions
493(1)
13.4 The Γ function and the Mellin transform
494(2)
13.5 The Fourier transform
496(2)
13.6 Solutions
498(15)
Part IV Appendix
14 Some Useful Theorems
14.1 Differentiable functions of two real variables
513(2)
14.2 Cauchy's multiplication theorem
515(3)
14.3 Summable families
518(4)
14.4 Weierstrass' theorem
522(1)
14.5 Weak forms of Fubini's theorem
523(1)
14.6 Interchanging integration and derivation
524(1)
14.7 Interchanging sum or products and limit
525(4)
15 Some Topology
15.1 Point topology
529(3)
15.2 Compact spaces
532(1)
15.3 Compactification
532(1)
15.4 Plane topology
533(2)
15.5 Some points of algebraic topology
535(1)
15.6 A Proof of the Fundamental Theorem of Algebra
536(5)
15.7 Solutions
541(4)
16 Some Functional Analysis Essentials
16.1 Hilbert and Banach spaces
545(5)
16.2 Countably normed spaces
550(1)
16.3 Reproducing kernel Hilbert spaces
550(5)
16.4 Solutions
555(8)
17 A Brief Survey of Integration
17.1 Introduction
563(2)
17.2 σ-algebras and measures
565(2)
17.3 Positive measures and integrals
567(2)
17.4 Functions with values in [ --∞, ∞]
569(1)
17.5 The main theorems
569(2)
17.6 Caratheodory's theorem and the Lebesgue measure
571(1)
17.7 Completion of measures
571(2)
17.8 Density results
573(1)
17.9 Solutions
573(6)
Bibliography 579(14)
Index 593
Prof. Daniel Alpay is a faculty member of the department of mathematics at Ben-Gurion University, Beer-Sheva, Israel. He is the incumbent of the Earl Katz Family chair in algebraic system theory. He has a double formation of electrical engineer (Telecom Paris, graduated 1978) and mathematician (PhD, Weizmann Institute, 1986). His research includes operator theory, stochastic analysis, and the theory of linear systems. Daniel Alpay is one of the initiators and responsible of the dual track electrical-engineering mathematics at Ben-Gurion University. He is the author of "An Advanced Complex Analysis Problem Book" (Birkhäuser, 2015). Together with co-authors, he has written seven books and close to 240 research papers, and edited fifteen books of research papers, and in particular the Springer Reference Work on Operator Theory.