Muutke küpsiste eelistusi

E-raamat: Complex Analytic Geometry: From The Localization Viewpoint

(Hokkaido Univ, Japan)
  • Formaat: 608 pages
  • Ilmumisaeg: 21-Feb-2024
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814374712
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 339,30 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 608 pages
  • Ilmumisaeg: 21-Feb-2024
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814374712
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Complex Analytic Geometry is a subject that could be termed, in short, as the study of the sets of common zeros of complex analytic functions. It has a long history and is closely related to many other fields of Mathematics and Sciences, where numerous applications have been found, including a recent one in the Sato hyperfunction theory.This book is concerned with, among others, local invariants that arise naturally in Complex Analytic Geometry and their relations with global invariants of the manifold or variety. The idea is to look at them as residues associated with the localization of some characteristic classes. Two approaches are taken for this topological and differential geometric and the combination of the two brings out further fruitful results. For this, on one hand, we present detailed description of the Alexander duality in combinatorial topology. On the other hand, we give a thorough presentation of the ech-de Rham cohomology and integration theory on it. This viewpoint provides us with the way for clearer and more precise presentations of the central concepts as well as fundamental and important results that have been treated only globally so far. It also brings new perspectives into the subject and leads to further results and applications.The book starts off with basic material and continues by introducing characteristic classes via both the obstruction theory and the Chern-Weil theory, explaining the idea of localization of characteristic classes and presenting the aforementioned invariants and relations in a unified way from this perspective. Various related topics are also discussed. The expositions are carried out in a self-containing manner and includes recent developments. The profound consequences of this subject will make the book useful for students and researchers in fields as diverse as Algebraic Geometry, Complex Analytic Geometry, Differential Geometry, Topology, Singularity Theory, Complex Dynamical Systems, Algebraic Analysis and Mathematical Physics.
Analytic Functions of Several Complex Variables; Complex Manifolds and
Analytic Varieties; Local Theory with Relevant Commutative Algebra; Vector
Bundles and Grassmann Manifolds; Vector Fields and Differential Forms; Cech -
de Rham and Cech - Dolbeault Cohomologies; Chern and Atiyah Classes via Chern
- Weil Theory; Localization of Characteristic Classes and Associated
Residues; Grothendieck Residues; Various Important Analytic Invariants as
Residues of Chern Classes; Coherent Sheaves; Hirzebruch and Grothendieck
Riemann - Roch Theorems; Analytic Intersection Theory on Singular Varieties;
Characteristic Classes of Singular Varieties.