Muutke küpsiste eelistusi

E-raamat: Complexity of Lattice Problems: A Cryptographic Perspective

  • Formaat - PDF+DRM
  • Hind: 249,47 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De­ spite their apparent simplicity, lattices hide a rich combinatorial struc­ ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap­ plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.

Muu info

Springer Book Archives
Preface ix
1 Basics 1(22)
1 Lattices
1(13)
1.1 Determinant
6(1)
1.2 Successive minima
7(4)
1.3 Minkowski's theorems
11(3)
2 Computational problems
14(7)
2.1 Complexity Theory
15(2)
2.2 Some lattice problems
17(2)
2.3 Hardness of approximation
19(2)
3 Notes
21(2)
2 Approximation Algorithms 23(22)
1 Solving SVP in dimension 2
24(8)
1.1 Reduced basis
24(3)
1.2 Gauss' algorithm
27(3)
1.3 Running time analysis
30(2)
2 Approximating SVP in dimension n
32(8)
2.1 Reduced basis
32(2)
2.2 The LLL basis reduction algorithm
34(2)
2.3 Running time analysis
36(4)
3 Approximating CVP in dimension n
40(2)
4 Notes
42(3)
3 Closest Vector Problem 45(24)
1 Decision versus Search
46(2)
2 NP-completeness
48(4)
3 SVP is not harder than CVP
52(6)
3.1 Deterministic reduction
53(3)
3.2 Randomized Reduction
56(2)
4 Inapproximability of CVP
58(6)
4.1 Polylogarithmic factor
58(3)
4.2 Larger factors
61(3)
5 CVP with preprocessing
64(3)
6 Notes
67(2)
4 Shortest Vector Problem 69(22)
1 Kannan's homogenization technique
70(7)
2 The Ajtai-Micciancio embedding
77(6)
3 NP-hardness of SVP
83(4)
3.1 Hardness under randomized reductions
83(2)
3.2 Hardness under nonuniform reductions
85(1)
3.3 Hardness under deterministic reductions
86(1)
4 Notes
87(4)
5 Sphere Packings 91(20)
1 Packing Points in Small Spheres
94(2)
2 The Exponential Sphere Packing
96(9)
2.1 The Schnorr-Adleman prime number lattice
97(2)
2.2 Finding clusters
99(5)
2.3 Some additional properties
104(1)
3 Integer Lattices
105(3)
4 Deterministic construction
108(2)
5 Notes
110(1)
6 Low-Degree Hypergraphs 111(14)
1 Sauer's Lemma
112(2)
2 Weak probabilistic construction
114(8)
2.1 The exponential bound
115(3)
2.2 Well spread hypergraphs
118(3)
2.3 Proof of the weak theorem
121(1)
3 Strong probabilistic construction
122(2)
4 Notes
124(1)
7 Basis Reduction Problems 125(18)
1 Successive minima and Minkowski's reduction
125(6)
2 Orthogonality defect and KZ reduction
131(5)
3 Small rectangles and the covering radius
136(5)
4 Notes
141(2)
8 Cryptographic Functions 143(52)
1 General techniques
146(15)
1.1 Lattices, sublattices and groups
147(6)
1.2 Discrepancy
153(4)
1.3 Statistical distance
157(4)
2 Collision resistant hash functions
161(23)
2.1 The construction
162(2)
2.2 Collision resistance
164(4)
2.3 The iterative step
168(14)
2.4 Almost perfect lattices
182(2)
3 Encryption Functions
184(10)
3.1 The GGH scheme
185(2)
3.2 The HNF technique
187(2)
3.3 The Ajtai-Dwork cryptosystem
189(2)
3.4 NTRU
191(3)
4 Notes
194(1)
9 Interactive Proof Systems 195(16)
1 Closest vector problem
198(6)
1.1 Proof of the soundness claim
201(3)
1.2 Conclusion
204(1)
2 Shortest vector problem
204(2)
3 Treating other norms
206(2)
4 What does it mean?
208(2)
5 Notes
210(1)
References 211(8)
Index 219