Muutke küpsiste eelistusi

E-raamat: Composite Nambu-Goldstone Higgs

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 913
  • Ilmumisaeg: 17-Nov-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319226170
  • Formaat - PDF+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 913
  • Ilmumisaeg: 17-Nov-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319226170

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Hierarchy Problem is arguably the most important guiding principle concerning the extension to high-energy scales of the Standard Model (SM) of Fundamental Interactions. Every scenario for addressing this issue unavoidably predicts new physics in the TeV energy range, which is currently being probed directly by the LHC experimental program. Among the possible solutions to the Hierarchy Problem, the scenario of a composite Higgs boson is a very simple idea and a rather plausible picture has emerged over the years by combining the following ingredients: First, the Higgs must be a (pseudo-) Nambu-Goldstone boson, rather than a generic hadron of the new strong sector. Second, through the so-called "partial compositeness", SM particles mix with strong sector resonances with suitable quantum numbers, so that they become a linear combination of elementary and composite degrees of freedom. Recently, general descriptions of the Composite Higgs Scenario were developed which successfully

capture the relevant features of this theoretical framework in a largely model-independent way. The present book provides a concise and illustrative introduction to the subject for a broad audience of graduate students and non-specialist researchers in the fields of particle, nuclear and gravitational physics.

Introduction.- Godstone Boson Higgs.- Beyond the Sigma-model.- Flavor.- Phenomenological Models.- Collider Phenomenology.- EW Precision Tests.- Bibliography.
1 Introduction
1(16)
1.1 The SM Is an Effective Field Theory
2(4)
1.2 A Natural Electroweak Scale
6(5)
1.3 Dimensional Transmutation
11(6)
References
15(2)
2 Goldstone Boson Higgs
17(60)
2.1 Vacuum Misalignment
17(4)
2.2 Two Simple Examples
21(11)
2.2.1 The Abelian Composite Higgs Model
21(5)
2.2.2 The Minimal Composite Higgs Model
26(6)
2.3 General CCWZ Construction
32(13)
2.3.1 The Basic Formalism
32(7)
2.3.2 Gauge Sources and Local Invariance
39(2)
2.3.3 Two Derivative Tensors and Resonances
41(4)
2.4 Partial Fermion Compositeness
45(32)
2.4.1 The Basic Idea
45(8)
2.4.2 Higgs Couplings to Fermions
53(21)
References
74(3)
3 Beyond the Sigma-Model
77(58)
3.1 One Scale One Coupling
79(12)
3.1.1 Large-N Power Counting
86(5)
3.2 Higher Derivative Operators
91(15)
3.2.1 Order p4 Bosonic
92(8)
3.2.2 Order p Fermionic
100(6)
3.3 The Composite Higgs Potential
106(29)
3.3.1 Higgs Potential Characterized
107(10)
3.3.2 Higgs Potential Estimated
117(5)
3.3.3 Higgs VEV, Mass and Tuning
122(10)
References
132(3)
4 Flavor
135(48)
4.1 Anarchic Partial Compositeness
136(11)
4.1.1 Quark Masses and Mixings
141(3)
4.1.2 Higgs Couplings and Higher-Order Effects
144(3)
4.2 Constraints on the Anarchic Scenario
147(22)
4.2.1 ΔF = 1 Transitions
149(11)
4.2.2 ΔF = 2 Transitions
160(5)
4.2.3 The Neutron EDM
165(2)
4.2.4 Beyond One Scale One Coupling
167(2)
4.3 Flavor Symmetric Scenarios
169(6)
4.3.1 The U(3)3 Models
172(2)
4.3.2 The U(2)3 Models
174(1)
4.4 The Lepton Sector
175(8)
4.4.1 Constraints
177(2)
References
179(4)
5 Phenomenological Models
183(46)
5.1 Multi-site Models: Collective Breaking
185(25)
5.1.1 The Non-linear a-Model
185(6)
5.1.2 The Two-Site Model
191(4)
5.1.3 The Three-Site Model
195(5)
5.1.4 The Matter Sector
200(5)
5.1.5 Alternative Constructions
205(2)
5.1.6 Locality in Theory Space
207(3)
5.2 The Higgs Potential
210(12)
5.2.1 The 5 + 5 Model
211(7)
5.2.2 The 14 + 1 Model
218(4)
5.3 The Weinberg Sum Rules
222(7)
5.3.1 The General Effective Lagrangian
222(1)
5.3.2 The Higgs Potential and the Weinberg Sum Rules
223(4)
References
227(2)
6 Collider Phenomenology
229(42)
6.1 Fermionic Resonances
229(26)
6.1.1 The Effective Parametrizations
231(11)
6.1.2 General Properties
242(7)
6.1.3 Collider Phenomenology
249(5)
6.1.4 Other Fermionic Partners
254(1)
6.2 Vector Resonances
255(16)
6.2.1 The Effective Parametrizations
256(5)
6.2.2 Collider Phenomenology
261(7)
References
268(3)
7 EW Precision Tests
271
7.1 The Oblique Parameters
272(20)
7.1.1 IR Corrections
274(3)
7.1.2 The Vector Resonances Contribution
277(2)
7.1.3 The Fermion Contribution
279(7)
7.1.4 Explicit Results
286(6)
7.2 The ZbLbL Coupling
292(13)
7.2.1 Tree-Level Corrections and the PLR Symmetry
293(4)
7.2.2 Loop Corrections
297(6)
7.2.3 Explicit Results
303(2)
7.3 The Top Couplings
305
7.3.1 A Relation Between δgtL and δVtb
306(1)
7.3.2 Explicit Results
307(8)
References
315