Muutke küpsiste eelistusi

E-raamat: Composite Particle Dynamics in Quantum Field Theory

  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Mar-2013
  • Kirjastus: Vieweg+Teubner Verlag
  • Keel: ger
  • ISBN-13: 9783322839015
  • Formaat - PDF+DRM
  • Hind: 38,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Mar-2013
  • Kirjastus: Vieweg+Teubner Verlag
  • Keel: ger
  • ISBN-13: 9783322839015

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Each atomistic theory of matter is based on the idea that agglomerations of their constituents are to be identified with observable objects of physical reality and that in this way the diversity of physical phenomena and reactions can be reduced to the interplay of a few elementary entities. This means theoretically that the formation of observable objects and their reactions have to be derived from the dynamics of their atomistic, i. e. elementary constituents. At present such atomistic theories of matter are formulated by quantum field theories. In view of the above described aim it is thus one of the most important tasks in quantum field theory to derive composite particles as bound states and to explain their dynamics as an effective dynamics induced by the elementary fields. In the development of quantum field theory many attempts have been made to solve this problem. So far, however, these attempts have been unsatisfactory and in this book some comments will be made on what the reasons are and where the difficulties arise. Roughly speaking the latter are closely connected with the idea to describe the effective dynamics of composite particles by means of the dynamics of field operator products. To avoid these difficulties we alternatively developed the method of weak mapping of quantum fields. The presentation of this method and of some applications to current problems is the object of this monography.
Notation.- 1 The Spinorfield Model.- 1.1 Introduction.- 1.2 Spinorfield
Regularization.- 1.3 Lagrange Formalism.- 1.4 Canonical Spinorfield
Quantization.- 1.5 Superindexing.- 1.6 Symmetry Conditions.- 2 Covariant
Quantum Field Dynamics.- 2.1 Introduction.- 2.2 Construction of Functional
States.- 2.3 Symmetries in Functional Space.- 2.4 Functional Field
Equations.- 2.5 Nonperturbative Normalordering.- 2.6 Vertex Renormalization.-
2.7 Limits of Covariant Formalism.- 3 Algebraic Schrödinger Representation.-
3.1 Introduction.- 3.2 Indefinite State Spaces.- 3.3 Probability
Interpretation.- 3.4 Nonorthogonal Basis Sets.- 3.5 Cyclic Basis Vector
Representations.- 3.6 Renormalized Eigenvalue Equations.- 3.7 Functional
Eigenvalue Equations.- 3.8 Normalordering.- 3.9 Covariant Equations on the
Hyperplane.- 4 Weak Mapping Theorems.- 4.1 Introduction.- 4.2 Hard Core
States.- 4.3 Selfconsistent Propagators.- 4.4 Effective Boson Dynamics.- 4.5
Direct and Exchange Forces.- 4.6 Estimate of Exchange Forces.- 4.7 Weak
Mapping in Functional Space.- 4.8 Dressed Particle States.- 4.9 Effective
Boson-and Composite Fermion-Dynamics.- 5 Bound State Calculations.- 5.1
Introduction.- 5.2 Covariant Bound State Equations.- 5.3 Vector Boson
States.- 5.4 Four-Fermion Bound States.- 5.5 Dressed Fermion States.- 5.6
Metric of Dressed Fermion States.- 6 Effective Yang-Mills Dynamics.- 6.1
Introduction.- 6.2 Effective Boson-Fermion Dynamics.- 6.3 Boson States and
Dual States.- 6.4 Evaluation of the Map.- 6.5 Quantum Properties of Mapped
Fields.- 6.6 Effective Boson-Fermion Lagrangian.- 7 Fermions and
Gravitation.- 7.1 Introduction.- 7.2 Anholonomic Spinor Connections.- 7.3
Weak Mapping with Gravitons.- 7.4 Graviton States.- 7.5 Dressed Fermion State
Calculations.- 7.6 Fermion-Graviton Coupling.- 8 WeakMapping and Gauge
Fields.- 8.1 Introduction.- 8.2 Spinor Electrodynamics in Coulomb Gauge.- 8.3
Quantization of Spinor Electrodynamics..- 8.4 Composite Particle Dynamics.-
8.5 Nonabelian Quantum Fields in Temporal Gauge.- 9 Superconductivity and
Higgs Fields.- 9.1 Introduction.- 9.2 Selfconsistent Propagators and States.-
9.3 Spectrum of Bound States.- 9.4 Ginzburg-Landau Equation.- 9.5 Electrical
Resistance.- 9.6 Thermostates and Weak Mapping.- 10 Path Integrals and
Effective Theories.- 10.1 Introduction.- 10.2 Functional Perturbation Theory
and Path Integrals.- 10.3 HadronizationofQCD.- 10.4 Composite Particles and
Field Operator Products.- 10.5 Evaluation of Fermion Determinants.- 10.6
Conclusions.- 11 Fock Space Mappings.- 11.1 Introduction.- 11.2 Ideal and
Physical Boson Spaces.- 11.3 Usui Mappings.- 11.4 Boson Mapping and Effective
Dynamics.