Muutke küpsiste eelistusi

E-raamat: Composites Materials for Food Packaging

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 225,94 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The novel insights, as well as the main drawbacks of each engineered composites material is extensively evaluated taking into account the strong relationship between packaging materials, environmental and reusability concerns, food quality, and nutritional value.

Composites, by matching the properties of different components, allow the development of innovative and performing strategies for intelligent food packaging, thus overcoming the limitations of using only a single material.

The book starts with the description of montmorillonite and halloysite composites, subsequently moving to metal-based materials with special emphasis on silver, zinc, silicium and iron. After the discussion about how the biological influences of such materials can affect the performance of packaging, the investigation of superior properties of sp2 carbon nanostructures is reported. Here, carbon nanotubes and graphene are described as starting points for the preparation of highly engineered composites able to promote the enhancement of shelf-life by virtue of their mechanical and electrical features.

Finally, in the effort to find innovative composites, the applicability of biodegradable materials from both natural (e.g. cellulose) and synthetic (e.g. polylactic acid PLA) origins, with the aim to prove that polymer-based materials can overcome some key limitations such as environmental impact and waste disposal.
Preface xv
1 Montmorillonite Composite Materials and Food Packaging 1(72)
Aris E. Giannakas
Areti A. Leontiou
1.1 Introduction
1(5)
1.2 Polymer/MMT-Based Packaging Materials
6(12)
1.2.1 Polyethylene(PE)/MMT-Based Packaging Materials
8(3)
1.2.2 Polystyrene(PS)/MMT-Based Packaging Materials
11(2)
1.2.3 Polypropylene (PP)/MMT-Based Composites for Food Packaging
13(3)
1.2.4 Poly(ethylene)terephthalate(PET)/MMT-Based Packaging Materials
16(2)
1.3 Biopolymers and Protein/MMT-Based Packaging Materials
18(21)
1.3.1 Starch/MMT-Based Packaging Materials
19(6)
1.3.2 Cellulose/MMT-Based Packaging Materials
25(4)
1.3.3 Chitosan/MMT Composite Materials
29(5)
1.3.4 PLA/MMT-Based Packaging Materials
34(3)
1.3.5 Protein/MMT-Based Packaging Materials
37(2)
1.4 Ag+-Cu2+-Zn2+/MMT-Based Composites Packaging Materials
39(6)
1.4.1 Ag+/MMT-Based Packaging Materials
40(2)
1.4.2 Cu2+/MMT-Based Packaging Materials
42(2)
1.4.3 Fe2+/MMT-Based Composites
44(1)
1.5 Metal Oxide/MMT-Based Packaging Materials
45(4)
1.6 Natural Antioxidants/MMT Composite Materials for Food Packaging
49(7)
1.7 Enzyme/MMT-Based Composites Packaging Materials
56(4)
1.8 Conclusion
60(1)
References
61(12)
2 Halloysite Containing Composites for Food Packaging Applications 73(50)
Raluca Nicoleta Darie-Nita
Cornelia Vasile
2.1 Halloysite
74(6)
2.1.1 Molecular and Crystalline Structure
74(3)
2.1.2 Properties
77(1)
2.1.3 Surface Modification of HAL
78(2)
2.1.3.1 Modification of the External Surface
79(1)
2.1.3.2 Modification by Click Chemistry
80(1)
2.2 Nanocomposites Containing HAL
80(32)
2.2.1 HAL Containing Non-Degradable Synthetic Polymeric Nanocomposites for Food Packaging Applications
81(17)
2.2.1.1 Processing Strategies
81(2)
2.2.1.2 Polyolefins/HNTs Nanocomposites
83(11)
2.2.1.3 Polystyrene/HNTs Nanocomposites
94(1)
2.2.1.4 Polyamide/HNTs Nanocomposites
95(2)
2.2.1.5 PET/HNTs Nanocomposites
97(1)
2.2.1.6 Elastomers(Rubbers)/HNTs Nanocomposites
97(1)
2.2.1.7 Epoxy/HNTs Nanocomposites
98(1)
2.2.2 HAL-Containing Degradable Polymeric Bionanocomposites for Food Packaging
98(26)
2.2.2.1 Preparation of HNT-Containing Degradable Nanocomposites
99(2)
2.2.2.2 Properties of HNT-Containing Degradable Nanocomposites
101(1)
2.2.2.3 Polyvinyl Alcohol (PVOH)/HNT
101(5)
2.2.2.4 Polyalkanoates/HNT Nanocomposites
106(1)
2.2.2.5 PLA/Halloysite Biocomposites
106(1)
2.2.2.6 Polysaccharide-HNT Composites
107(2)
2.2.2.7 Lignocellulose/Wood Fibers/HAL Clay Composites
109(1)
2.2.2.8 Polysaccharides/HAL Clay Composites
110(1)
2.2.2.9 Proteins/HNT Biocomposites
111(1)
2.2.2.10 Natural Rubber/HNTs Composites
111(1)
2.3 Conclusion
112(1)
References
112(11)
3 Silver Composite Materials and Food Packaging 123(30)
Amalia I. Cano
Amparo Chiralt
Chelo Gonzalez-Martinez
3.1 Silver and Silver Compounds as Active Agents
124(20)
3.1.1 History and Background
124(1)
3.1.2 Chemical Species of Silver
125(5)
3.1.3 Silver in Polymeric Matrices for Food Packaging Purposes
130(14)
3.1.3.1 Different Methodologies to Incorporate Silver and Silver Species into Packaging Materials
130(1)
3.1.3.2 Functional Characterization of Silver-Enriched Packaging Materials
131(13)
3.1.4 Current Legislation Applied to Silver Composite Materials Used for Food Packaging
144(1)
3.2 Conclusions
144(1)
References
145(8)
4 Zinc Composite Materials and Food Packaging 153(22)
R. Venkatesan
T. Thendral Thiyagu
N. Rajeswari
4.1 Introduction
153(1)
4.2 Food Packaging
154(1)
4.3 Polymers in Food Packaging
154(2)
4.4 Nanotechnology
156(1)
4.5 Nano-Fillers
156(1)
4.6 Classification of Nano-fillers
157(1)
4.7 ZnO Nanoparticles
157(2)
4.7.1 Advantages of ZnO Nanoparticles
157(1)
4.7.2 Limitations of ZnO Nanoparticles
158(1)
4.8 Composites
159(1)
4.8.1 Classification of Composites
159(1)
4.8.1.1 Metal Matrix Composites
159(1)
4.8.1.2 Ceramic Matrix Composites
159(1)
4.8.1.3 Polymer Matrix Composites
159(1)
4.8.2 Components of Composites
159(2)
4.8.2.1 Matrix
159(1)
4.8.2.2 Fillers
160(1)
4.8.2.3 Nanocomposites
160(1)
4.8.3 Preparation of Nanocomposites
161(2)
4.8.3.1 Solution Casting
161(1)
4.8.3.2 In Situ Polymerization
162(1)
4.8.3.3 Melt Extrusion
162(1)
4.8.4 Properties of Nanocomposites
163(1)
4.8.4.1 Mechanical Properties
163(1)
4.8.4.2 Thermal Properties
163(1)
4.8.4.3 Barrier Properties
163(1)
4.8.4.4 Antimicrobial Properties
164(1)
4.8.5 Applications of Nanocomposites
164(1)
4.8.6 ZnO-Based Composites in Food Packaging
164(7)
4.8.6.1 Preparation of ZnO Composites
166(1)
4.8.6.2 Morphology of the ZnO Composites
167(1)
4.8.6.3 Mechanical Properties of ZnO Composites
167(2)
4.8.6.4 Barrier Properties of ZnO Composites
169(2)
4.9 Conclusions
171(1)
References
172(3)
5 Silicium-Based Nanocomposite Materials for Food Packaging Applications 175(34)
Tanja Radusin
Ivan Ristic
Branka Pilic
Donatella Duraccio
Aleksandra Novakovic
5.1 Introduction
176(2)
5.2 Nanosilica/Polymer Composites
178(3)
5.2.1 Composite Preparation
179(2)
5.2.1.1 Blending
179(2)
5.2.1.2 Sol-Gel Process
181(1)
5.2.1.3 In Situ Polymerization
181(1)
5.3 Characterization of Polymer/Nancomposites
181(17)
5.3.1 Morphology
182(2)
5.3.2 Physical-Chemical Properties
184(11)
5.3.2.1 Thermal Properties
184(2)
5.3.2.2 Mechanical Properties
186(1)
5.3.2.3 Crystallization of Polymer/Silica Nanocomposites
187(8)
5.3.3 Barrier Properties
195(1)
5.3.4 Optical Properties
196(1)
5.3.5 Antimicrobial Properties
196(2)
5.4 Conclusion
198(1)
References
198(11)
6 Nanoiron-Based Composite Oxygen Scavengers for Food Packaging 209(26)
Zenon Foltynowicz
6.1 Introduction
210(2)
6.1.1 The Effect of Oxygen on Packed Products
210(1)
6.1.2 The Need of Oxygen Scavengers
211(1)
6.2 Characteristics of Oxygen Scavengers
212(4)
6.2.1 Types and Classification of Oxygen Absorbers
212(1)
6.2.2 Iron-Based Oxygen Scavengers
213(1)
6.2.3 The Factors Influences the Efficiency of Iron-Based Oxygen Scavengers
214(2)
6.3 Nanomaterials and Nanoiron
216(3)
6.3.1 Nanomaterials Property
216(1)
6.3.2 Nanoiron Property
216(1)
6.3.3 Nanoiron Preparation
217(2)
6.4 Nanoiron-Based Composite Oxygen Scavengers
219(8)
6.4.1 Why Nanoiron?
219(2)
6.4.2 Nanoiron with Specific Properties
221(2)
6.4.3 Composite Oxygen Scavengers Based on Nanoiron
223(3)
6.4.4 Safety of the Use of Composite Oxygen Scavengers Based on Nanoiron
226(1)
References
227(8)
7 Carbon Nanotubes (CNTs) Composite Materials and Food Packaging 235(16)
Dan Xu
7.1 Introductions on Carbon Nanotubes
236(1)
7.2 Polymer/CNTs Composite Materials
236(7)
7.2.1 Modification of CNTs
237(1)
7.2.2 Fabrication Method
238(1)
7.2.3 Properties
238(5)
7.3 Safety Issues of CNTs and Polymer/CNTs Composites
243(1)
7.3.1 Toxicity of CNTs
243(1)
7.3.2 Migration of CNTs from Polymer/CNTs Composites
243(1)
7.4 Outlook
244(1)
References
244(7)
8 Polymer/Graphene Nanocomposites for Food Packaging 251(18)
Steven Merritt
Chaoying Wan
Barbara Shollock
Samson Patole
David M. Haddleton
8.1 Polymers for Food Packaging
251(1)
8.2 Polymers for Steel Can Packaging
252(1)
8.3 Water Permeation and Anticorrosion of Polymer Coatings
253(2)
8.4 Polymer-Food Interactions
255(1)
8.5 Polymer/Clay Nanocomposites
255(2)
8.6 Polymer/Graphene Nanocomposites
257(6)
8.6.1 Graphene and its Derivatives for Food Packaging
257(2)
8.6.2 Biodegradable Polymer/Graphene Nanocomposites
259(3)
8.6.3 Synthetic Polymer/Graphene Nanocomposites
262(1)
8.7 Summary and Outlook
263(1)
References
264(5)
9 Biodegradability and Compostability of Food Nanopackaging Materials 269(28)
Tomy J. Gutierrez
9.1 Introduction
269(1)
9.2 Biodegradability and Compostability
270(4)
9.3 Biodegradability and Compostability of Food Nanopackaging Materials
274(14)
9.3.1 Biodegradability and Compostability of Food Nanopackaging Made from Biopolymers
276(1)
9.3.2 Biodegradability and Compostability of Food Nanopackaging Made from Nanoclays
277(2)
9.3.3 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites
279(19)
9.3.3.1 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites-Biopolymers/Nanoclays
281(6)
9.3.3.2 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites-Biopolymer/Nanocellulosic Materials
287(1)
9.4 Conclusion
288(2)
Conflicts of Interest
290(1)
Acknowledgments
290(1)
References
290(7)
10 Nanocellulose in Food Packaging 297(34)
Paula Criado
Farah M.J. Hossain
Stephane Salmieri
Monique Lacroix
10.1 Antimicrobial Effectiveness of Biopolymeric Films/Coatings Containing Cellulose Nanostructures
298(9)
10.1.1 Biopolymeric Films Containing CNCs
298(7)
10.1.2 Bioactive Films Containing CNFs
305(1)
10.1.3 Nanostructured Bio-Based Bacterial Cellulose (BC)-Containing Films
306(1)
10.2 Physicochemical Properties of Bio-Nanocomposites Materials Reinforced with CNC
307(1)
10.3 Enhancement of the Mechanical Properties of Polymers with CNC
308(1)
10.4 Enhancement of the Barrier Properties of Polymers with CNC
309(1)
10.5 Research Works on CNC as Biodegradable Reinforcement and Barrier Component
310(9)
10.5.1 Grafting of Cellulose Nanocrystals for Food Packaging
312(1)
10.5.2 TEMPO-Mediated Oxidation of Nanocellulose
312(1)
10.5.3 Functionalization of Nanocellulose via TEMPO-Mediated Oxidation
313(1)
10.5.4 Cationization of Nanocellulose with Antimicrobial Purposes
314(2)
10.5.5 Esterification
316(1)
10.5.6 Non-Covalent Surface Chemical Modification
317(1)
10.5.7 Polymerization of Bioactive Compounds onto Nanocellulose Surface
318(1)
10.6 Conclusion
319(1)
References
320(11)
11 Nanocellulose in Combination with Inorganic/Organic Biocides for Food Film Packaging Applications-Safety Issues Review 331(24)
Kelsey L. O'Donnell
Gloria S. Oporto
Noelle Comolli
11.1 Introduction
332(4)
11.1.1 Typical Polymers and Processes Used to Prepare Flexible Films in the Packaging Industry
332(2)
11.1.2 Current Organic and Inorganic Antimicrobial Materials (Biocides) Used in Packaging and Correlating Processing Conditions
334(2)
11.1.3 Release of Active Components (Biocides) From Packaging Films-Tentative Mechanisms
336(1)
11.2 Nanocellulose in Flexible Film Food Packaging
336(7)
11.2.1 Current Forms of Cellulose Used in Packaging
336(1)
11.2.2 Nanocellulose in Flexible Film Food Packaging
337(2)
11.2.3 Nanocellulose in Combination with Organic and Inorganic Antimicrobial Materials
339(2)
11.2.4 Nanocelulose in Combination with Copper and Benzalkounium Chloride-West Virginia University (WVU) Preliminary Results
341(2)
11.2.4.1 Nanocellulose-Copper/Zinc: Synergistic Effect (Preliminary Experiments)
342(1)
11.2.4.2 Nanocellulose-Benzalkonium Chloride (BZK) (Preliminary Experiments)
342(1)
11.3 Health and Environmental Toxicity Evaluations of Active Antimicrobial Packaging
343(7)
11.3.1 General Toxic Evaluations on Packaging Materials (In Vivo, In Vitro Testing)-the United States
344(1)
11.3.2 General Toxic Evaluations on Packaging Materials (In Vivo, In Vitro Testing)-Europe
345(3)
11.3.3 Specific Toxic Evaluation on Cellulosic and Nanocellulosic Materials
348(2)
References
350(5)
12 Composite Materials Based on PLA and its Applications in Food Packaging 355(46)
Jesus R. Rodriguez-Nunez
Tomas J. Madera-Santana
Heidy Burrola-Nunez
Efren G. Martinez-Encinas
12.1 Introduction
356(1)
12.2 Synthesis of Polylactic Acid
356(3)
12.3 Reinforcing Agents
359(7)
12.3.1 Natural Fibers and Fillers
360(6)
12.3.2 Synthetic Fibers and Fillers
366(1)
12.4 Surface Modification of Fibers and Fillers
366(4)
12.4.1 Physical Methods (Corona, Plasma, Irradiation Treatments)
367(1)
12.4.2 Chemical Methods (Alkaline, Acetylation, Maleation, Silane, Enzymatic Treatment)
368(2)
12.5 Nanostructures in the PLA Matrix
370(1)
12.6 Processing Techniques
371(10)
12.6.1 Processing Technologies of PLA Composites
372(9)
12.6.1.1 Compression Molding
372(2)
12.6.1.2 Extrusion
374(1)
12.6.1.3 Injection Molding
375(2)
12.6.1.4 Extrusion or Injection Blow Molding
377(1)
12.6.1.5 Calendering, Cast Film, and Sheet
378(1)
12.6.1.6 Thermoforming
379(1)
12.6.1.7 Foaming PLA
379(2)
12.7 Properties Related to Packaging Applications
381(7)
12.7.1 Physical Properties
382(2)
12.7.2 Mechanical Properties
384(1)
12.7.3 Thermal Properties
385(2)
12.7.4 Functional Properties
387(1)
12.8 Recyclability of PLA
388(1)
12.9 Biodegradation of PLA
389(1)
12.10 Future Tendencies
390(1)
References
391(10)
13 Nanomaterial Migration from Composites into Food Matrices 401(36)
Victor Gomes Lauriano Souza
Regiane Ribeiro-Santos
Patricia Freitas Rodrigues
Caio Gomide Otoni
Maria Paula Duarte
Isabel M. Coelhoso
Ana Luisa Fernando
13.1 Introduction
402(1)
13.2 Nanotechnology in the Food Industry
403(10)
13.2.1 Nanoparticle Characterization Techniques
403(3)
13.2.2 Nanoparticle Characterization in Food Matrices
406(1)
13.2.3 Nanomaterial Migration from Composites into Food Matrices: Case Studies
407(6)
13.3 Nanoparticle Toxicology
413(7)
13.3.1 Toxicological Tests
415(2)
13.3.2 Toxicological Studies of ENMs Used in the Food Packaging Industry
417(2)
13.3.3 Ecotoxicology of ENMs
419(1)
13.4 Migration Assays and Current Legislation
420(6)
13.4.1 Food Contact Nanomaterials
424(2)
13.5 Conclusion
426(1)
Acknowledgments
427(1)
References
427(10)
Index 437
Giuseppe Cirillo received his PhD in 2008 from the University of Calabria Italy where he is currently in a post-doctoral position. His research interests are in the development of functional polymers with tailored biological activity (antioxidant, antimicrobial, anticancer, chelating), the design of smart hydrogels for drug delivery, the study of the activity of innovative functional foods and nutraceuticals, and the synthesis and functionalization of carbon nanotubes-based devices for biomedical applications. He is the author and co-author of more than 100 publications, including four edited books with Wiley-Scrivener.

Marek A. Kozlowski has 47 years' experience in polymer chemistry and technology and is Professor Emeritus from Wroclaw University of Technology, Poland. He is the author of 360 papers and patents, holder of several national and international prizes and honours and is a member of IUPAC WP 4.1. His research interests include polymer blends and composites of pre-designed properties, in particular the interrelations between structure, processing and properties of multiphase systems. He is an Expert of the United Nations Industrial Development Organization and evaluator of proposals submitted to the European Community R&D Programs.

Umile Gianfranco Spizzirri obtained his PhD in 2005 from the University of Calabria. He is currently a member of the Technical Staff at the Department of Pharmacy, Nutrition and Health Science of the same university. His research activities are mainly related to the polymer chemistry and technology for the preparation of stimuli-responsive drug delivery system, functional polymers for food industry, and new analytical methodologies for the food quality and safety assessment. He is the author and co-author of more than 100 publications, including three edited books with Wiley-Scrivener.