Muutke küpsiste eelistusi

E-raamat: Compressive Sensing of Earth Observations

Edited by (University of Massachusetts Dartmouth, North Dartmouth, USA)
  • Formaat - PDF+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Future remote sensing systems will make extensive use of Compressive Sensing (CS) as it becomes more integrated into the system design with increased high resolution sensor developments and the rising earth observation data generated each year. Written by leading experts in the field Compressive Sensing of Earth Observations provides a comprehensive and balanced coverage of the theory and applications of CS in all aspects of earth observations. This work covers a myriad of practical aspects such as the use of CS in detection of human vital signs in a cluttered environment and the corresponding modeling of rib-cage breathing. Readers are also presented with three different applications of CS to the ISAR imaging problem, which includes image reconstruction from compressed data, resolution enhancement, and image reconstruction from incomplete data.
Preface ix
Editor xiii
Contributors xv
1 Compressed Sensing: From Theory to Praxis
1(32)
Axel Flinth
Ali Hashemi
Gitta Kutyniok
2 Compressive Sensing on the Sphere: Slepian Functions for Applications in Geophysics
33(22)
Zubair Khalid
Abubakr Muhammad
3 Compressive Sensing-Based High-Resolution Imaging and Tracking of Targets and Human Vital Sign Detection behind Walls
55(28)
Ahmad Hoorfar
Ozlem Kilic
Aly E. Fathy
4 Recovery Guarantees for High-Resolution Radar Sensing with Compressive Illumination
83(22)
Nithin Sugavanam
Emre Ertin
5 Compressive Sensing for Inverse Synthetic Aperture Radar Imaging
105(26)
Alessio Bacci
Elisa Giusti
Sonia Tomei
Davide Cataldo
Marco Martorella
Fabrizio Berizzi
6 A Novel Compressed Sensing---Based Algorithm for Space---Time Signal Processing Using Airborne Radars
131(22)
Jing Liu
Mahendra Mallick
Feng Lian
Kaiyu Huang
7 Bayesian Sparse Estimation of Radar Targets in the Compressed Sensing Framework
153(24)
Stephanie Bidon
Marie Lasserre
Francois Le Chevalier
8 Virtual Experiments and Compressive Sensing for Subsurface Microwave Tomography
177(22)
Martina Bevacqua
Lorenzo Crocco
Loreto Di Donato
Tommaso Isernia
Roberta Palmeri
9 Seismic Source Monitoring with Compressive Sensing
199(28)
Ismael Vera Rodriguez
Mauricio D. Sacchi
10 Seismic Data Regularization and Imaging Based on Compressive Sensing and Sparse Optimization
227(30)
Yanfei Wang
Jingjie Cao
11 Land Use Classification with Sparse Models
257(16)
Mohamed L. Mekhalfi
Farid Melgani
Yakoub Bazi
Naif Alajlan
12 Compressive Sensing for Reconstruction, Classification, and Detection of Hyperspectral Images
273(26)
Bing Zhang
Wei Li
Lianru Gao
Xu Sun
13 Structured Abundance Matrix Estimation for Land Cover Hyperspectral Image Unmixing
299(14)
Paris V. Giampouras
Konstantinos E. Themelis
Athanasios A. Rontogiannis
Konstantinos D. Koutroumbas
14 Parallel Coded Aperture Method for Hyperspectral Compressive Sensing on GPU
313(16)
Gabriel Martin
Jose Nascimento
Jose Bioucas-Dias
15 Algorithms and Prototyping of a Compressive Hyperspectral Imager
329(22)
Alessandro Barducci
Giulio Coluccia
Donatella Guzzi
Cinzia Lastri
Enrico Magli
Valentina Raimondi
Index 351
Chi Hau Chen (IEEE Life Fellow 2003, IEEE Fellow 1988) received his Ph.D. in electrical engineering from Purdue University in 1965. He has been a faculty member with the University of Massachusetts Dartmouth (UMass Dartmouth) since1968 where he is currently Chancellor Professor Emeritus. Dr. Chen was the Associate Editor of IEEE Trans. on Acoustics, Speech and Signal Processing from 1982 to 1986, Associate Editor on information processing of IEEE Trans. on Geoscience and Remote Sensing 1985 to 2000. He is also a Fellow of International Association of Pattern Recognition (IAPR, 1966) and a editorial Board Member of Pattern Recognition Journal since 2008. He is a book series editor for CRC Press on Signal and Image Processing with Earth Observations. In addition to the theory and applications of statistical pattern recognition, his research has included the signal and image processing of underwater acoustic and geophysical signals, and ultrasonic data for nondestructive evaluation, as well as remote sensing and medical imaging. He has published 34 (authored and edited) books in his areas of research interest.