Muutke küpsiste eelistusi

E-raamat: Computability

  • Formaat: PDF+DRM
  • Ilmumisaeg: 02-Aug-2022
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030832025
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 02-Aug-2022
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030832025

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This survey of computability theory offers the techniques and tools that computer scientists (as well as mathematicians and philosophers studying the mathematical foundations of computing) need to mathematically analyze computational processes and investigate the theoretical limitations of computing. Beginning with an introduction to the mathematisation of “mechanical process” using URM programs, this textbook explains basic theory such as primitive recursive functions and predicates and sequence-coding, partial recursive functions and predicates, and loop programs. 

Advanced chapters cover the Ackerman function, Tarski’s theorem on the non-representability of truth, Goedel’s incompleteness and Rosser’s incompleteness theorems, two short proofs of the incompleteness theorem that are based on Lob's deliverability conditions, Church’s thesis, the second recursion theorem and applications, a provably recursive universal function for the primitive recursive functions, Oracle computations and various classes of computable functionals, the Arithmetical hierarchy, Turing reducibility and Turing degrees and the priority method, a thorough exposition of various versions of the first recursive theorem, Blum’s complexity, Hierarchies of primitive recursive functions, and a machine-independent characterisation of Cobham's feasibly computable functions.

Arvustused

This textbook is suited for self-study . As a second reading however a reader interested in rigorous proofs and/or different approaches to known concepts will benefit from this wealth of material. (Dieter Riebesehl, zbMATH 1507.03002, 2023)

Mathematical Background; a Review.- A Theory of Computability.- Primitive Recursive Functions.- Loop Programs.-The Ackermann Function.- (Un)Computability via Church's Thesis.- Semi-Recursiveness.- Yet another number-theoretic characterisation of P.- Godel's Incompleteness Theorem via the Halting Problem.- The Recursion Theorem.- A Universal (non-PR) Function for PR.- Enumerations of Recursive and Semi-Recursive Sets.- Creative and Productive Sets Completeness.- Relativised Computability.- POSSIBILITY: Complexity of P Functions.- Complexity of PR Functions.- Turing Machines and NP-Completeness.
George Tourlakis, PHD, is University Professor of Computer Science and Engineering at York University in Toronto, Canada. He has published extensively in his areas of research interest, which include calculational logic, modal logic, computability, and complexity theory. Dr. Tourlakis is the author of Theory of Computation and Mathematical Logic, both published by Wiley, and Lectures in Logic and Set Theory; Volumes 1 and 2 (Cambridge University Press).