Muutke küpsiste eelistusi

E-raamat: Computational Auditory Scene Analysis: Proceedings of the Ijcai-95 Workshop

Edited by , Edited by , Edited by (Kyoto University), Edited by
  • Formaat: 414 pages
  • Ilmumisaeg: 31-Jan-2021
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781000106114
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 80,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 414 pages
  • Ilmumisaeg: 31-Jan-2021
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781000106114
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The interest of AI in problems related to understanding sounds has a rich history dating back to the ARPA Speech Understanding Project in the 1970s. While a great deal has been learned from this and subsequent speech understanding research, the goal of building systems that can understand general acoustic signals--continuous speech and/or non-speech sounds--from unconstrained environments is still unrealized. Instead, there are now systems that understand "clean" speech well in relatively noiseless laboratory environments, but that break down in more realistic, noisier environments. As seen in the "cocktail-party effect," humans and other mammals have the ability to selectively attend to sound from a particular source, even when it is mixed with other sounds. Computers also need to be able to decide which parts of a mixed acoustic signal are relevant to a particular purpose--which part should be interpreted as speech, and which should be interpreted as a door closing, an air conditioner humming, or another person interrupting.

Observations such as these have led a number of researchers to conclude that research on speech understanding and on nonspeech understanding need to be united within a more general framework. Researchers have also begun trying to understand computational auditory frameworks as parts of larger perception systems whose purpose is to give a computer integrated information about the real world. Inspiration for this work ranges from research on how different sensors can be integrated to models of how humans' auditory apparatus works in concert with vision, proprioception, etc. Representing some of the most advanced work on computers understanding speech, this collection of papers covers the work being done to integrate speech and nonspeech understanding in computer systems.
Preface ix David F. Rosenthal Hiroshi G. Okuno 1 Psychological Data and Computational ASA 1(12) Albert S. Bregman 2 A Prototype Speech Recognizer based on Associative Learning and Nonlinear Speech Analysis 13(14) Jean Rouat Miguel Garcia 3 A Critique of Pure Audition 27(16) Malcolm Slaney 4 Psychophysically Faithful Methods for Extracting Pitch 43(16) Ray Meddis Lowel OMard 5 Implications of Physiological Mechanisms of Amplitude Modulation Processing for Modeling Complex Sounds Analysis and Separation 59(12) Frederic Berthommier Christian Lorenzi 6 Stream Segregation Based on Oscillatory Correlation 71(16) DeLiang Wang 7 Temporal Synchronization in a Neural Oscillator Model of Primitive Auditory Stream Segregation 87(18) Guy J. Brown Martin Cooke 8 The IPUS Blackboard Architecture as a Framework for Computational Auditory Scene Analysis 105(10) Frank Klassner Victor Lesser S. Hamid Nawab 9 Application of the Bayesian Probability Network to Music Scene Analysis 115(24) Kunio Kashino Kazuhiro Nakadai Tomoyoshi Kinoshita Hidehiko Tanaka 10 Context-Sensitive Selection of Competing Auditory Organizations: A Blackboard Model 139(18) Darryl Godsmark Guy J. Brown 11 Musical Understanding at the Beat Level: Real-time Beat Tracking for Audio Signals 157(20) Masataka Goto Yoichi Muraoka 12 Knowledge-Based Analysis of Speech Mixed With Sporadic Environmental Sounds 177(18) S. Hamid Nawab Carol Y. Espy-Wilson Ramamurthy Mani Nabil N. Bitar 13 Multiagent Based Binaural Sound Stream Segregation 195(20) Tomohiro Nakatani Hiroshi G. Okuno Masataka Goto Takatoshi Ito 14 Discrepancy Directed Model Acquisition for Adaptive Perceptual Systems 215(18) Malini K. Bhandaru Victor R. Lesser 15 Auditory Scenes Analysis: Primary Segmentation and Feature Estimation 233(10) Alon Fishbach 16 Cocktail Party Processors Based on Binaural Models 243(14) Jorn W. Grabke Jens Blauert 17 Midlevel Representations for Computational Auditory Scene Analysis: The Weft Element 257(16) Dan Ellis David F. Rosenthal 18 The Complex-valued Continuous Wavelet Transform as a Preprocessor for Auditory Scene Analysis 273(20) Ludger Solbach Rolf Wohrmann Jorg Kliewer 19 Analysis and Synthesis of Sound Textures 293(16) Nicolas Saint-Arnaud Kris Popat 20 Predicting the Grouping of Rhythmic Sequences using Local Estimators of Information Content 309(12) Steven M. Boker Michael Kubovy 21 Analysis of a Simultaneous-Speaker Sound Corpus 321(14) Brian L. Karlsen Guy J. Brown Martin Cooke Malcolm Crawford Phil Green Steve Renals 22 Hearing Voice: Transformed Auditory Feedback Effects on Voice Pitch Control 335(16) Hideki Kawahara 23 Toward Content-Based Audio Indexing and Retrieval and a New Speaker Discrimination Technique 351(10) Lonce Wyse Stephen W. Smoliar 24 Using Musical Knowledge to Extract Expressive Performance Information from Audio Recordings 361(20) Eric D. Scheirer Author Index 381(6) Subject Index 387
Rosenthal\, David F.; Okuno\, Hiroshi G.; Okuno\, Hiroshi; Rosenthal\, David