Muutke küpsiste eelistusi

E-raamat: Computational Commutative Algebra 1

  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Jul-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540706281
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Jul-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540706281

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Hofstadters Law: It always takes longer than you think it will take, even if you take into account Hofstadters Law. (Douglas R. Hofstadter) Dear Reader, what you are holding in your hands now is for youabook. But for us, for our families and friends, it has been known as the book over the last three years. Three years of intense work just to ?ll three centimeters of your bookshelf! This amounts to about one centimeter per year, or roughly two- fths of an inch per year if you are non-metric. Clearly we had ample opportunity to experience the full force of Hofstadters Law. Writing a book about Computational Commutative Algebra is not - like computing a Gr¨ obner basis: you need unshakeable faith to believe that the project will ever end; likewise, you must trust in the Noetherianity of polynomial rings to believe that Buchbergers Algorithm will ever terminate. Naturally, we hope that the ?nal result proves our e orts worthwhile. This is a book for learning, teaching, reading, and, most of all, enjoying the topic at hand.

Arvustused

From the reviews:

"... This is one of the most refreshing mathematical books I have ever held in my hands. The authors do not believe in teaching by spreading out the material, but they introduce it via questions and discussions, they explore it in an intuitive fashion, exercise it through well-chosen examples, and start the reader on his own expeditions through numerous "tutorials", i.e., guided projects. This is academic teaching at its best: if I had not seen it, I should not have believed that it can be done so well. ... In conclusion, this book gives students a stimulating introduction to commutative algebra very much geared to their need, and it provides numerous useful ideas to those who teach the subject." (H.Stetter, IMN - Internationale Mathematische Nachrichten 2003, Vol. 57, Issue 193)

"This account of polynomial rings, Gröbner bases and applications such as computations of syzygies is written from the point of view of a computer user; as a result,it often provides new insights. The exercises and tutorials (how to work with CoCoA) add to the usefulness of the volume." (Mathematika 48, 2001)

"Das Buch ist in einem aufmunternd lockeren Stil geschrieben und für Studierende gut zum Selbststudium geeignet. Der präsentierte Stoff wird durch viele Beispiele und Übungsaufgaben (teilweise mit Anleitungen im Anhang) ergänzt. Weiter sind in jedem Abschnitt sorgfältig ausgearbeitete Tutorials angefügt, die zur Benutzung von Computeralgebrasystemen, insbesondere CoCoA, anregen sollen." (Computeralgebra-Rundbrief, Nr. 28, März 2001)

"Four years ago the authors published the first volume of a projected seris about computational commutative algebra which "took three years of intense work just to fill three centimeters of your bookshelf". Now they have gifted us with the second volume, and they say that "the completion of this volume took four years and it is about four centimeters thick. Thus we have a confirmedinvariant which governs our writing: our velocity is one centimeter per year." These quotations from the foreword of the book give a clue of how amusing it is, and also how mathematically solid it is.

In this second volume the authors continue with the same style as the first, an almost humorous one. [ ...]

It was a pleasure to review this nice book but, as always, the equilibrium of the world depends on good and bad things, and the "bad thing" is the authors' decision to not write a third volume. In their own words: "Alas, we have to inform you that this is absolutely and definitely the second and last volume of the trilogy." Fortunately, these two volumes collect so large an amount of information and inspiration that we can say the authors actually fulfilled our expectations."

Paulo F. Machado, Mathematical Review Clippings 2006h

"An excellent, non-standard, elementary and self-contained introduction to the theory of Gröbner bases and its applications . Moreover, the style is very friendly and relaxing . As it is now, this book can be used either to introduce the theory of Gröbner bases to students with a basic knowledge of algebra or to provide a first introduction to commutative algebra ." (Laureano Gonzélez-Vega and Tomás Recio, ACM SIGSAM Bulletin, Vol. 38 (2), 2004)

Foreword v
Introduction 1(1)
What Is This Book About?
1(1)
What Is a Grobner Basis?
2(1)
Who Invented This Theory?
3(1)
Now, What Is This Book Really About?
4(3)
What Is This Book Not About?
7(1)
Are There any Applications of This Theory?
8(2)
How Was This Book Written?
10(1)
What Is a Tutorial?
11(1)
What Is CoCoA?
12(1)
And What Is This Book Good for?
12(1)
Some Final Words of Wisdom
13(2)
Foundations
15(70)
Polynomial Rings
17(12)
Polynomial Representation I
24(2)
The Extended Euclidean Algorithm
26(1)
Finite Fields
27(2)
Unique Factorization
29(12)
Euclidean Domains
36(1)
Squarefree Parts of Polynomials
37(1)
Berlekamp's Algorithm
38(3)
Monomial Ideals and Monomial Modules
41(8)
Congenerators
47(1)
Basic Operations with Monomial Ideals and Modules
48(1)
Term Orderings
49(10)
Monoid Orderings Represented by Matrices
57(1)
Classification of Term Orderings
58(1)
Leading Terms
59(10)
Polynomial Representation II
66(1)
Symmetric Polynomials
66(1)
Newton Polytopes
67(2)
The Division Algorithm
69(7)
Implementation of the Division Algorithm
74(1)
Normal Remainders
75(1)
Gradings
76(9)
Homogeneous Polynomials
83(2)
Grobner Bases
85(60)
Special Generation
87(4)
Minimal Polynomials of Algebraic Numbers
89(2)
Rewrite Rules
91(8)
Algebraic Numbers
98(1)
Syzygies
99(11)
Syzygies of Elements of Monomial Modules
108(1)
Lifting of Syzygies
109(1)
Grobner Bases of Ideals and Modules
110(11)
Existence of Grobner Bases
112(1)
Normal Forms
113(2)
Reduced Grobner Bases
115(4)
Linear Algebra
119(1)
Reduced Gronber Bases
120(1)
Buchberger's Algorithm
121(12)
Buchberger's Criterion
128(1)
Computing Some Grobner Bases
129(2)
Some Optimizations of Buchberger's Algorithm
131(2)
Hilbert's Nullstellensatz
133(12)
The Field-Theoretic Version
134(3)
The Geometric Version
137(6)
Graph Colourings
143(1)
Affine Varieties
144(1)
First Applications
145(130)
Computation of Syzygy Modules
148(12)
Splines
155(4)
Hilbert's Syzygy Theorem
159(1)
Elementary Operations on Modules
160(17)
Intersections
162(4)
Colon Ideals and Annihilators
166(3)
Colon Modules
169(5)
Computation of Intersections
174(1)
Computation of Colon Ideals and Colon Modules
175(2)
Homomorphisms of Modules
177(18)
Kernels, Images, and Liftings of Linear Maps
178(3)
Hom-Modules
181(10)
Computing Kernels and Pullbacks
191(2)
The Depth of a Module
193(2)
Elimination
195(16)
Elimination of Module Components
202(2)
Projective Spaces and Gramannians
204(3)
Diophantine Systems and Integer Programming
207(4)
Localization and Saturation
211(14)
Localization
212(3)
Saturation
215(5)
Computation of Saturations
220(2)
Toric Ideals
222(3)
Homomorphisms of Algebras
225(16)
Projections
234(2)
Grobner Bases and Invariant Theory
236(4)
Subalgebras of Function Fields
240(1)
Systems of Polynomial Equations
241(34)
A Bound for the Number of Solutions
243(4)
Radicals of Zero-Dimensional Ideals
247(7)
Solving Systems Effectively
254(7)
Strange Polynomials
261(3)
Primary Decompositions
264(3)
Modern Portfolio Theory
267(8)
A. How to Get Started with CoCoA 275(8)
B. How to Program CoCoA 283(10)
C. A Potpourri of CoCoA Programs 293(12)
D. Hints for Selected Exercises 305(4)
Notation 309(4)
Bibliography 313(2)
Index 315