Muutke küpsiste eelistusi

E-raamat: Computational Design of Lightweight Structures: Form Finding and Optimization

  • Formaat: PDF+DRM
  • Ilmumisaeg: 06-Mar-2014
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118908969
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 171,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 06-Mar-2014
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118908969
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The author of this book presents a general, robust, and easy-to-use method that can handle many design parameters efficiently.

Following an introduction, Chapter 1 presents the general concepts of truss layout optimization, starting from topology optimization where structural component sizes and system connectivity are simultaneously optimized. To fully realize the potential of truss layout optimization for the design of lightweight structures, the consideration of geometrical variables is then introduced.

Chapter 2 addresses truss geometry and topology optimization by combining mathematical programming and structural mechanics: the structural properties of the optimal solution are used for devising the novel formulation. To avoid singularities arising in optimal configurations, this approach disaggregates the equilibrium equations and fully integrates their basic elements within the optimization formulation. The resulting tool incorporates elastic and plastic design, stress and displacement constraints, as well as self-weight and multiple loading. The inherent slenderness of lightweight structures requires the study of stability issues.

As a remedy, Chapter 3 proposes a conceptually simple but efficient method to include local and nodal stability constraints in the formulation. Several numerical examples illustrate the impact of stability considerations on the optimal design.

Finally, the investigation on realistic design problems in Chapter 4 confirms the practical applicability of the proposed method. It is shown how we can generate a range of optimal designs by varying design settings.
Preface vii
Introduction xi
Chapter 1 Truss Layout Optimization
1(32)
1.1 Standard theory of mathematical programming
1(2)
1.2 Governing equations of truss structures
3(4)
1.3 Layout and topology optimization
7(8)
1.3.1 Basic problem statement
7(4)
1.3.2 Problem equivalence and numerical solution
11(4)
1.4 Generalization
15(12)
1.4.1 Self-weight and multiple loading
15(1)
1.4.2 Compliance optimization
16(1)
1.4.3 Volume optimization
17(4)
1.4.4 Stress singularity
21(4)
1.4.5 Local buckling singularity
25(2)
1.5 Truss geometry and topology optimization
27(5)
1.5.1 Optimization of nodal positions
27(3)
1.5.2 Melting node effect
30(2)
1.6 Concluding remarks
32(1)
Chapter 2 Unified Formulation
33(32)
2.1 Literature review
33(3)
2.2 Disaggregation of equilibrium equations
36(2)
2.3 Minimum volume problem
38(3)
2.4 Minimum compliance problem
41(3)
2.5 Reduced formulation for single loading
44(2)
2.6 Nonlinear programming
46(10)
2.6.1 Barrier problem
47(2)
2.6.2 Sequential quadratic programming with trust regions
49(2)
2.6.3 Verification test
51(5)
2.7 Design settings
56(6)
2.8 Concluding remarks
62(3)
Chapter 3 Stability Considerations
65(18)
3.1 Literature review
65(4)
3.2 Lower bound plastic design formulation
69(2)
3.3 Nominal force method for local stability
71(4)
3.4 Local buckling criterion
75(1)
3.5 Formulation including stability constraints
76(2)
3.6 Numerical examples
78(4)
3.6.1 Three-hinged arch
78(2)
3.6.2 L-shaped frame
80(2)
3.7 Concluding remarks
82(1)
Chapter 4 Structural Design Applications
83(16)
4.1 Reticulated dome
83(3)
4.2 Lateral bracing of Winter's type column
86(2)
4.3 Arch bridge
88(2)
4.4 Suspension bridge
90(2)
4.5 Dutch Maritime Museum
92(7)
Conclusions and Future Prospects 99(6)
Appendix 105(8)
Bibliography 113(22)
Index 135
Benoît Descamps is an architectural engineer specializing in the computational design and optimization of lightweight structures. He holds a PhD from the Université libre de Bruxelles in Belgium, where he is now a researcher in the Building, Architecture & Town Planning Department. His research activities are concerned with architectural design, form finding, structural optimization, mathematical programming, and parametric modeling. He is currently working on a spin-off project which aims to introduce computational optimization tools into construction practice.