Muutke küpsiste eelistusi

E-raamat: Computational Electromagnetics with MATLAB, Fourth Edition

(Prairie View A&M University, Texas, USA)
  • Formaat: 707 pages
  • Ilmumisaeg: 20-Jul-2018
  • Kirjastus: CRC Press
  • ISBN-13: 9781351365093
  • Formaat - PDF+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 707 pages
  • Ilmumisaeg: 20-Jul-2018
  • Kirjastus: CRC Press
  • ISBN-13: 9781351365093

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism.











Includes new homework problems in each chapter.





Each chapter is updated with the current trends in CEM.





Adds a new appendix on CEM codes, which covers commercial and free codes.





Provides updated MATLAB code.
Preface xiii
Acknowledgment xv
A Note to Students xvii
Author xix
1 Fundamental Concepts 1(28)
1.1 Introduction
1(2)
1.2 Review of EM Theory
3(12)
1.2.1 Electrostatic Fields
3(1)
1.2.2 Magnetostatic Fields
4(1)
1.2.3 Time-Varying Fields
5(2)
1.2.4 Boundary Conditions
7(1)
1.2.5 Wave Equations
8(1)
1.2.6 Time-Varying Potentials
9(2)
1.2.7 Time-Harmonic Fields
11(4)
1.3 Classification of EM Problems
15(6)
1.3.1 Classification of Solution Regions
15(1)
1.3.2 Classification of Differential Equations
15(4)
1.3.3 Classification of Boundary Conditions
19(2)
1.4 Some Important Theorems
21(6)
1.4.1 Superposition Principle
21(1)
1.4.2 Uniqueness Theorem
21(6)
References
27(2)
2 Analytical Methods 29(94)
2.1 Introduction
29(1)
2.2 Separation of Variables
29(3)
2.3 Separation of Variables in Rectangular Coordinates
32(10)
2.3.1 Laplace's Equation
32(4)
2.3.2 Wave Equation
36(6)
2.4 Separation of Variables in Cylindrical Coordinates
42(14)
2.4.1 Wave Equation
45(11)
2.5 Separation of Variables in Spherical Coordinates
56(15)
2.5.1 Laplace's Equation
57(4)
2.5.2 Wave Equation
61(10)
2.6 Some Useful Orthogonal Functions
71(9)
2.7 Series Expansion
80(10)
2.7.1 Poisson's Equation in a Cube
80(2)
2.7.2 Poisson's Equation in a Cylinder
82(3)
2.7.3 Strip Transmission Line
85(5)
2.8 Practical Applications
90(8)
2.8.1 Scattering by Dielectric Sphere
90(5)
2.8.2 Scattering Cross Sections
95(3)
2.9 Attenuation due to Raindrops
98(7)
2.10 Concluding Remarks
105(15)
References
120(3)
3 Finite Difference Methods 123(106)
3.1 Introduction
123(1)
3.2 Finite Difference Schemes
124(3)
3.3 Finite Differencing of Parabolic PDEs
127(5)
3.4 Finite Differencing of Hyperbolic PDEs
132(4)
3.5 Finite Differencing of Elliptic PDEs
136(4)
3.5.1 Band Matrix Method
137(1)
3.5.2 Iterative Methods
137(3)
3.6 Accuracy and Stability of FD Solutions
140(7)
3.7 Practical Applications I: Guided Structures
147(9)
3.7.1 Transmission Lines
147(6)
3.7.2 Waveguides
153(3)
3.8 Practical Applications II: Wave Scattering (FDTD)
156(17)
3.8.1 Yee's Finite Difference Algorithm
159(2)
3.8.2 Accuracy and Stability
161(1)
3.8.3 Lattice Truncation Conditions
162(2)
3.8.4 Initial Fields
164(1)
3.8.5 Programming Aspects
165(8)
3.9 Absorbing Boundary Conditions for FDTD
173(8)
3.10 Advanced Applications of FDTD
181(2)
3.10.1 Periodic Structures
181(1)
3.10.2 Antennas
182(1)
3.10.3 PSTD Techniques
182(1)
3.10.4 Photonics
182(1)
3.10.5 Metamaterials
182(1)
3.10.6 MEEP
183(1)
3.11 Finite Differencing for Nonrectangular Systems
183(6)
3.11.1 Cylindrical Coordinates
183(4)
3.11.2 Spherical Coordinates
187(2)
3.12 Numerical Integration
189(13)
3.12.1 Euler's Rule
190(2)
3.12.2 Trapezoidal Rule
192(1)
3.12.3 Simpson's Rule
193
3.12.4 Newton-Cotes Rules
1'(195)
3.12.5 Gaussian Rules
196(1)
3.12.6 Multiple Integration
197(5)
3.13 Concluding Remarks
202(19)
References
221(8)
4 Variational Methods 229(50)
4.1 Introduction
229(1)
4.2 Operators in Linear Spaces
229(3)
4.3 Calculus of Variations
232(4)
4.4 Construction of Functionals from PDEs
236(3)
4.5 Rayleigh-Ritz Method
239(7)
4.6 Weighted Residual Method
246(1)
4.7 Collocation Method
247(8)
4.7.1 Subdomain Method
248(1)
4.7.2 Galerkin Method
249(1)
4.7.3 Least Squares Method
249(6)
4.8 Eigenvalue Problems
255(6)
4.9 Practical Applications
261(7)
4.10 Concluding Remarks
268(8)
References
276(3)
5 Moment Methods 279(92)
5.1 Introduction
279(1)
5.2 Differential Equations
280(2)
5.3 Integral Equations
282(5)
5.3.1 Classification of IEs
283(1)
5.3.2 Connection between Differential and IEs
284(3)
5.4 Green's Functions
287(18)
5.4.1 For Free Space
288(5)
5.4.2 For Domain with Conducting Boundaries
293(17)
5.4.2.1 Method of Images
293(2)
5.4.2.2 Eigenfunction Expansion
295(10)
5.5 Applications I: Quasi-Static Problems
305(5)
5.6 Applications II: Scattering Problems
310(10)
5.6.1 Scattering by Conducting Cylinder
311(3)
5.6.2 Scattering by an Arbitrary Array of Parallel Wires
314(6)
5.7 Applications III: Radiation Problems
320(14)
5.7.1 Hallen's IE
322(1)
5.7.2 Pocklington's IE
323(1)
5.7.3 Expansion and Weighting Functions
323(11)
5.8 Applications IV: EM Absorption in the Human Body
334(17)
5.8.1 Derivation of IEs
335(3)
5.8.2 Transformation to Matrix Equation (Discretization)
338(1)
5.8.3 Evaluation of Matrix Elements
339(1)
5.8.4 Solution of the Matrix Equation
340(11)
5.9 Concluding Remarks
351(15)
References
366(5)
6 Finite Element Method 371(80)
6.1 Introduction
371(1)
6.2 Solution of Laplace's Equation
372(13)
6.2.1 Finite Element Discretization
372(1)
6.2.2 Element Governing Equations
373(4)
6.2.3 Assembling of All Elements
377(2)
6.2.4 Solving the Resulting Equations
379(6)
6.3 Solution of Poisson's Equation
385(7)
6.3.1 Deriving Element-Governing Equations
387(3)
6.3.2 Solving the Resulting Equations
390(2)
6.4 Solution of the Wave Equation
392(3)
6.5 Automatic Mesh Generation I: Rectangular Domains
395(4)
6.6 Automatic Mesh Generation II: Arbitrary Domains
399(3)
6.6.1 Definition of Blocks
400(1)
6.6.2 Subdivision of Each Block
401(1)
6.6.3 Connection of Individual Blocks
402(1)
6.7 Bandwidth Reduction
402(6)
6.8 Higher-Order Elements
408(12)
6.8.1 Pascal Triangle
408(1)
6.8.2 Local Coordinates
409(2)
6.8.3 Shape Functions
411(2)
6.8.4 Fundamental Matrices
413(7)
6.9 Three-Dimensional Elements
420(5)
6.10 FEMs for Exterior Problems
425(3)
6.10.1 Infinite Element Method
425(1)
6.10.2 Boundary Element Method
426(1)
6.10.3 Absorbing Boundary Condition
427(1)
6.11 Finite-Element Time-Domain Method
428(2)
6.12 Applications: Microstrip Lines
430(2)
6.13 Concluding Remarks
432(12)
References
444(7)
7 Transmission-Line-Matrix Method 451(62)
7.1 Introduction
451(2)
7.2 Transmission-Line Equations
453(3)
7.3 Solution of Diffusion Equation
456(4)
7.4 Solution of Wave Equations
460(15)
7.4.1 Equivalence between Network and Field Parameters
461(3)
7.4.2 Dispersion Relation of Propagation Velocity
464(2)
7.4.3 Scattering Matrix
466(2)
7.4.4 Boundary Representation
468(1)
7.4.5 Computation of Fields and Frequency Response
469(1)
7.4.6 Output Response and Accuracy of Results
470(5)
7.5 Inhomogeneous and Lossy Media in TLM
475(8)
7.5.1 General 2-D Shunt Node
475(2)
7.5.2 Scattering Matrix
477(1)
7.5.3 Representation of Lossy Boundaries
478(5)
7.6 3-D TLM Mesh
483(14)
7.6.1 Series Nodes
483(2)
7.6.2 3-D Node
485(4)
7.6.3 Boundary Conditions
489(8)
7.7 Error Sources and Correction
497(2)
7.7.1 Truncation Error
498(1)
7.7.2 Coarseness Error
498(1)
7.7.3 Velocity Error
498(1)
7.7.4 Misalignment Error
499(1)
7.8 Absorbing Boundary Conditions
499(2)
7.9 Concluding Remarks
501(7)
References
508(5)
8 Monte Carlo Methods 513(64)
8.1 Introduction
513(1)
8.2 Generation of Random Numbers and Variables
514(3)
8.3 Evaluation of Error
517(4)
8.4 Numerical Integration
521(5)
8.4.1 Crude Monte Carlo Integration
521(2)
8.4.2 Monte Carlo Integration with Antithetic Variates
523(1)
8.4.3 Improper Integrals
524(2)
8.5 Solution of Potential Problems
526(19)
8.5.1 Fixed Random Walk
526(4)
8.5.2 Floating Random Walk
530(3)
8.5.3 Exodus Method
533(12)
8.6 Markov Chain Regional MCM
545(7)
8.7 MCMC for Poisson's Equation
552(4)
8.8 Time-Dependent Problems
556(6)
8.9 Concluding Remarks
562(10)
References
572(5)
9 Method of Lines 577(36)
9.1 Introduction
577(1)
9.2 Solution of Laplace's Equation
578(10)
9.2.1 Rectangular Coordinates
578(6)
9.2.2 Cylindrical Coordinates
584(4)
9.3 Solution of Wave Equation
588(16)
9.3.1 Planar Microstrip Structures
590(7)
9.3.2 Cylindrical Microstrip Structures
597(7)
9.4 Time-Domain Solution
604(2)
9.5 Concluding Remarks
606(3)
References
609(4)
Selected Bibliography 613(4)
Appendix A: Vector Relations 617(4)
Appendix B: Programming in MATLAB 621(14)
Appendix C: Solution of Simultaneous Equations 635(20)
Appendix D: Computational Electromagnetic Codes 655(2)
Appendix E: Answers to Odd-Numbered Problems 657(20)
Index 677
Matthew N. O. Sadiku received his B.Sc. degree in 1978 from Ahmadu Bello University, Zaria, Nigeria, and his M.Sc. and Ph.D. degrees from Tennessee Technological University, Cookeville, Tennessee, in 1982 and 1984, respectively. From 1984 to 1988, he was an assistant professor at Florida Atlantic University, where he worked as a graduate in computer science. From 1988 to 2000, he was at Temple University, Philadelphia, Pennsylvania, where he became a full professor. From 2000 to 2002, he was with Lucent/Avaya, Holmdel, New Jersey, as a system engineer and with Boeing Satellite Systems as a senior scientist. He is presently a professor of electrical and computer engineering at Prairie View A&M University, Prairie View, Texas.









He is the author of over 450 professional papers and 70 books including Elements of Electromagnetics (Oxford, 4th ed., 2007), Fundamentals of Electric Circuits (McGraw-Hill, 4th ed., 2009, with C. Alexander), Numerical Techniques in Electromagnetics (CRC, 3rd ed., 2009), Metropolitan Area Networks (CRC Press, 1995), and Principles of Modern Communication Systems (Cambridge University Press, 2017, with S.O. Agbo). In addition to the engineering books, he has written Christian books, including Secrets of Successful Marriages, How to Discover Gods Will for Your Life, and commentaries on all the books of the New Testament Bible. Some of his books have been translated into Korean, Chinese (and Chinese Long Form in Taiwan), Italian, Portuguese, and Spanish.









He was the recipient of the 2000 McGraw-Hill/Jacob Millman Award for outstanding contributions in the field of electrical engineering. He was also the recipient of Regents Professor award for 2012-2013 by the Texas A&M University System. He is a registered professional engineer and a fellow of the Institute of Electrical and Electronics Engineers (IEEE) "for contributions to computational electromagnetics and engineering education." He was the IEEE Region 2 Student Activities Committee Chairman. He was an associate editor for IEEE Transactions on Education. He is also a member of Association for Computing Machinery (ACM) and American Society of Engineering Education (ASEE). His current research interests are in the areas of CEM, computer networks, and engineering education. His works can be found in his autobiography, My Life and Work (Trafford Publishing, 2017) or his website: www.matthewsadiku.com. He currently resides with his wife Kikelomo in Hockley, Texas. He can be reached via email at sadkiu@ieee.org.