Muutke küpsiste eelistusi

E-raamat: Computational Finance: An Introductory Course with R

  • Formaat - PDF+DRM
  • Hind: 66,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book covers a wide range of topics, yet essential, in Computational Finance (CF), understood as a mix of Finance, Computational Statistics, and Mathematics of Finance. In that regard it is unique in its kind, for it touches upon the basic principles of all three main components of CF, with hands-on examples for programming models in R. Thus, the first chapter gives an introduction to the Principles of Corporate Finance: the markets of stock and options, valuation and economic theory, framed within Computation and Information Theory (e.g. the famous Efficient Market Hypothesis is stated in terms of computational complexity, a new perspective). Chapters 2 and 3 give the necessary tools of Statistics for analyzing financial time series, it also goes in depth into the concepts of correlation, causality and clustering. Chapters 4 and 5 review the most important discrete and continuous models for financial time series. Each model is provided with an example program in R. Chapter 6 covers the essentials of Technical Analysis (TA) and Fundamental Analysis. This chapter is suitable for people outside academics and into the world of financial investments, as a primer in the methods of charting and analysis of value for stocks, as it is done in the financial industry. Moreover, a mathematical foundation to the seemly ad-hoc methods of TA is given, and this is new in a presentation of TA. Chapter 7 reviews the most important heuristics for optimization: simulated annealing, genetic programming, and ant colonies (swarm intelligence) which is material to feed the computer savvy readers. Chapter 8 gives the basic principles of portfolio management, through the mean-variance model, and optimization under different constraints which is a topic of current research in computation, due to its complexity. One important aspect of this chapter is that it teaches how to use the powerful tools for portfolio analysis from the RMetrics R-package. Chapter 9 is a natural continuation of chapter 8 into the new area of research of online portfolio selection. The basic model of the universal portfolio of Cover and approximate methods to compute are also described.



This book covers a wide range of essential topics in computational finance, touching upon the basic principles of finance, computational statistics and mathematics of finance. It features hands-on examples for programming models in R.
1 An Abridged Introduction to Finance
1(36)
1.1 Financial Securities
1(18)
1.1.1 Bonds and the Continuous Compounding of Interest Rates
2(2)
1.1.2 Stocks: Trade, Price and Indices
4(8)
1.1.3 Options and Other Derivatives
12(6)
1.1.4 Portfolios and Collective Investment
18(1)
1.2 Financial Engineering
19(14)
1.2.1 Trading Positions and Attitudes
19(3)
1.2.2 On Price and Value of Stocks. The Discounted Cash Flow model
22(3)
1.2.3 Arbitrage and Risk-Neutral Valuation Principle
25(6)
1.2.4 The Efficient Market Hypothesis and Computational Complexity
31(2)
1.3 Notes, Computer Lab and Problems
33(4)
2 Statistics of Financial Time Series
37(34)
2.1 Time Series of Returns
37(6)
2.2 Distributions, Density Functions and Moments
43(13)
2.2.1 Distributions and Probability Density Functions
43(2)
2.2.2 Moments of a Random Variable
45(4)
2.2.3 The Normal Distribution
49(2)
2.2.4 Distributions of Financial Returns
51(5)
2.3 Stationarity and Autocovariance
56(4)
2.4 Forecasting
60(2)
2.5 Maximum Likelihood Methods
62(2)
2.6 Volatility
64(3)
2.7 Notes, Computer Lab and Problems
67(4)
3 Correlations, Causalities and Similarities
71(38)
3.1 Correlation as a Measure of Association
72(6)
3.1.1 Linear Correlation
72(4)
3.1.2 Properties of a Dependence Measure
76(1)
3.1.3 Rank Correlation
77(1)
3.2 Causality
78(6)
3.2.1 Granger Causality
79(2)
3.2.2 Non Parametric Granger Causality
81(3)
3.3 Grouping by Similarities
84(19)
3.3.1 Basics of Data Clustering
85(2)
3.3.2 Clustering Methods
87(7)
3.3.3 Clustering Validation and a Summary of Clustering Analysis
94(1)
3.3.4 Time Series Evolving Clusters Graph
95(8)
3.4 Stylized Empirical Facts of Asset Returns
103(1)
3.5 Notes, Computer Lab and Problems
104(5)
4 Time Series Models in Finance
109(36)
4.1 On Trend and Seasonality
110(1)
4.2 Linear Processes and Autoregressive Moving Averages Models
111(13)
4.3 Nonlinear Models ARCH and GARCH
124(6)
4.3.1 The ARCH Model
124(3)
4.3.2 The GARCH Model
127(3)
4.4 Nonlinear Semiparametric Models
130(6)
4.4.1 Neural Networks
131(3)
4.4.2 Support Vector Machines
134(2)
4.5 Model Adequacy and Model Evaluation
136(4)
4.5.1 Tests for Nonlinearity
137(1)
4.5.2 Tests of Model Performance
138(2)
4.6 Appendix: NNet and SVM Modeling in R
140(2)
4.7 Notes, Computer Lab and Problems
142(3)
5 Brownian Motion, Binomial Trees and Monte Carlo Simulation
145(32)
5.1 Continuous Time Processes
145(8)
5.1.1 The Wiener Process
146(3)
5.1.2 Ito's Lemma and Geometric Brownian Motion
149(4)
5.2 Option Pricing Models: Continuous and Discrete Time
153(11)
5.2.1 The Black-Scholes Formula for Valuing European Options
154(4)
5.2.2 The Binomial Tree Option Pricing Model
158(6)
5.3 Monte Carlo Valuation of Derivatives
164(8)
5.4 Notes, Computer Lab and Problems
172(5)
6 Trade on Pattern Mining or Value Estimation
177(30)
6.1 Technical Analysis
177(19)
6.1.1 Dow's Theory and Technical Analysis Basic Principles
178(2)
6.1.2 Charts, Support and Resistance Levels, and Trends
180(3)
6.1.3 Technical Trading Rules
183(7)
6.1.4 A Mathematical Foundation for Technical Analysis
190(6)
6.2 Fundamental Analysis
196(8)
6.2.1 Fundamental Analysis Basic Principles
196(1)
6.2.2 Business Indicators
197(2)
6.2.3 Value Indicators
199(3)
6.2.4 Value Investing
202(2)
6.3 Notes, Computer Lab and Problems
204(3)
7 Optimization Heuristics in Finance
207(32)
7.1 Combinatorial Optimization Problems
207(2)
7.2 Simulated Annealing
209(4)
7.2.1 The Basics of Simulated Annealing
210(1)
7.2.2 Estimating a GARCH(1, 1) with Simulated Annealing
211(2)
7.3 Genetic Programming
213(13)
7.3.1 The Basics of Genetic Programming
215(3)
7.3.2 Finding Profitable Trading Rules with Genetic Programming
218(8)
7.4 Ant Colony Optimization
226(7)
7.4.1 The Basics of Ant Colony Optimization
227(2)
7.4.2 Valuing Options with Ant Colony Optimization
229(4)
7.5 Hybrid Heuristics
233(1)
7.6 Practical Considerations on the Use of Optimization Heuristics
234(2)
7.7 Notes, Computer Lab and Problems
236(3)
8 Portfolio Optimization
239(28)
8.1 The Mean-Variance Model
239(8)
8.1.1 The Mean-Variance Rule and Diversification
239(2)
8.1.2 Minimum Risk Mean-Variance Portfolio
241(2)
8.1.3 The Efficient Frontier and the Minimum Variance Portfolio
243(1)
8.1.4 General Mean-Variance Model and the Maximum Return Portfolio
244(3)
8.2 Portfolios with a Risk-Free Asset
247(9)
8.2.1 The Capital Market Line and the Market Portfolio
249(1)
8.2.2 The Sharpe Ratio
250(1)
8.2.3 The Capital Asset Pricing Model and the Beta of a Security
251(5)
8.3 Optimization of Portfolios Under Different Constraint Sets
256(4)
8.3.1 Portfolios with Upper and Lower Bounds in Holdings
257(1)
8.3.2 Portfolios with Limited Number of Assets
258(1)
8.3.3 Simulated Annealing Optimization of Portfolios
259(1)
8.4 Portfolio Selection
260(3)
8.5 Notes, Computer Lab and Problems
263(4)
9 Online Finance
267(16)
9.1 Online Problems and Competitive Analysis
268(1)
9.2 Online Price Search
269(3)
9.2.1 Searching for the Best Price
269(1)
9.2.2 Searching for a Price at Random
270(2)
9.3 Online Trading
272(1)
9.3.1 One-Way Trading
272(1)
9.4 Online Portfolio Selection
273(8)
9.4.1 The Universal Online Portfolio
274(5)
9.4.2 Efficient Universal Online Portfolio Strategies
279(2)
9.5 Notes, Computer Lab and Problems
281(2)
Appendix A The R Programming Environment
283(6)
A.1 R, What is it and How to Get it
283(1)
A.2 Installing R Packages and Obtaining Financial Data
284(1)
A.3 To Get You Started in R
285(1)
A.4 References for R and Packages Used in This Book
286(3)
References 289(8)
Index 297