Muutke küpsiste eelistusi

E-raamat: Computational Fluid Dynamics: An Introduction to Modeling and Applications

  • Formaat: 352 pages
  • Ilmumisaeg: 03-Mar-2023
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781264274956
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 78,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 352 pages
  • Ilmumisaeg: 03-Mar-2023
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781264274956
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A new Computational Fluid Dynamics methodology that uses modeling software and is light on theory and rigorous math

This concise, highly-illustrated resource presents a new, streamlined method for approaching Computational Fluid Dynamics (CFD) that uses the cutting-edge software ANSYS Fluent and minimal mathematical computations. The book teaches, step by step, how to use the latest software from Fluent to perform the complex calculations required to simulate the free-stream flow of fluids as well as the interaction of the fluids (liquids and gases) with surfaces.

Developed from curricula taught by the authors, Computational Fluid Dynamics: An Introduction to Modeling and Applications shows how to apply high-powered numerical analyses and data structures to analyze and solve problems that involve fluid flows and heat transfer. Coverage includes laminar and turbulent flows, heat sinks, heat exchangers, and transient flows. Readers will also discover how to handle validation using real-world simulators such as wind tunnels before moving up to full-scale testing with flight tests.

  • Provides a new approach that involves more graphics and software to simplify CFD
  • Aligns with real-world applications through the use of simulation models
  • Written by a pair of mechanical engineering educators and thermal fluid experts

Preface ix
Acknowledgments xi
1 Conservation Laws in Thermal-Fluid Sciences
1(28)
1.1 Conservation Laws in Integral Form
3(7)
1.1.1 Conservation of Mass
3(2)
1.1.2 Conservation of Momentum
5(2)
1.1.3 Conservation of Energy
7(3)
1.2 Conservation Laws in Differential Form
10(11)
1.2.1 The Continuity Equation
11(1)
1.2.2 Differential Form of the Conservation of Momentum
12(6)
1.2.3 The Energy Equation
18(3)
1.3 Special Cases
21(3)
1.3.1 Steady Flow
21(1)
1.3.2 Two-Dimensional Flow
21(1)
1.3.3 Inviscid Flow
21(2)
1.3.4 Inertia-free (Stokes) Flow
23(1)
1.3.5 Constant Density Flow
23(1)
1.3.6 Incompressible Flow
23(1)
1.4 General Form of the Conservation Laws
24(1)
1.5 Cartesian, Cylindrical, and Spherical Coordinates
25(4)
1.5.1 Cartesian Coordinates
25(1)
1.5.2 Cylindrical Coordinates
26(1)
1.5.3 Spherical Coordinates
26(3)
2 Introduction to Computational Fluid Dynamics Using the Finite Volume Method
29(36)
2.1 What Is Computational Fluid Dynamics?
30(1)
2.2 The Building Blocks of a CFD Solution Method
31(3)
2.2.1 Sources of Numerical Error
33(1)
2.2.2 Assessment of a CFD Solution Method
33(1)
2.3 Numerical Representation of the Domain
34(2)
2.4 The Finite Volume Method
36(8)
2.4.1 Evaluation of the Volume Integral
37(1)
2.4.2 Evaluation of the Surface Integral of the Diffusion Flux
38(1)
2.4.3 Evaluation of the Surface Integral of the Advection Flux
38(2)
2.4.4 Evaluation of ∂φ/∂n at the Face
40(1)
2.4.5 Evaluation of φ at the Face
41(1)
2.4.6 Evaluation of the Advection Term
41(2)
2.4.7 Numerically Solving the Steady General Transport Equation
43(1)
2.5 Solving of the Linear System of Equations
44(3)
2.5.1 Jacobi-Based Iterative Methods
45(2)
2.6 Integration in Time for Unsteady Flow
47(2)
2.7 The Navier-Stokes Equations
49(7)
2.7.1 Unsteady Flows
51(2)
2.7.2 Steady Flow
53(3)
2.8 Boundary Conditions
56(4)
2.8.1 Inflow Boundary Condition
57(1)
2.8.2 Wall Boundary Condition
58(1)
2.8.3 Symmetry Boundary Condition
59(1)
2.8.4 Outflow Boundary Condition
60(1)
2.9 Solution Verification
60(5)
3 Two-Dimensional Steady State Laminar Incompressible Fluid Flow
65(46)
3.1 Introduction
66(1)
3.2 Problem Statement
67(1)
3.3 Governing Equations and Boundary Conditions
68(4)
3.3.1 Exact Solution in the Fully Developed Region
69(3)
3.3.2 The Entry Region
72(1)
3.4 Modeling Using Fluent
72(32)
3.4.1 Introduction to ANSYS Fluent
73(1)
3.4.2 Geometry
74(6)
3.4.3 Mesh
80(5)
3.4.4 Setup
85(19)
3.5 Verification
104(7)
3.5.1 Grid Independent Study
105(2)
3.5.2 Comparison with Exact Solution and/or Empirical relations
107(4)
4 Three-Dimenshmal Steady State Turbulent Incompressible Fluid Flow
111(44)
4.1 Introduction to Turbulence
112(2)
4.2 Turbulence Modeling
114(3)
4.2.1 The Turbulence Energy Spectrum
114(1)
4.2.2 Reynolds Averaging
115(1)
4.2.3 Turbulence Closure Models
116(1)
4.2.4 Filtering
117(1)
4.3 Problem Statement
117(1)
4.4 Governing Equations and Boundary Conditions
118(3)
4.4.1 Flow in the Fully Developed Region
119(2)
4.5 Modeling Using Fluent
121(26)
4.5.1 Geometry
121(6)
4.5.2 Mesh
127(4)
4.5.3 Setup
131(7)
4.5.4 Solution
138(9)
4.6 Verification
147(8)
4.6.1 Grid Independent Study
147(4)
4.6.2 Comparison with Empirical Correlations
151(4)
5 Convection Heat Transfer for Two-Dimensional Steady State Incompressible Flow
155(46)
5.1 Introduction to Heat Transfer
156(4)
5.1.1 Conduction
157(1)
5.1.2 Convection
158(1)
5.1.3 Radiation
159(1)
5.2 Problem Statement
160(2)
5.3 Governing Equations and Boundary Conditions
162(7)
5.3.1 Heat Conduction in the Pipe Wall
163(1)
5.3.2 Forced Convection of Internal Flow
164(2)
5.3.3 Entry Region
166(1)
5.3.4 Fully Developed Region
167(2)
5.4 Modeling Using Fluent
169(28)
5.4.1 Geometr
170(6)
5.4.2 Mesh
176(5)
5.4.3 Setup
181(11)
5.4.4 Results
192(5)
5.5 Verification
197(4)
5.5.1 Grid Independent Study
197(1)
5.5.2 Comparison with Empirical Correlations
198(3)
6 Three-Dimensional Fluid Flow and Heat Transfer Modeling in a Heat Exchanger
201(48)
6.1 Introduction to Heat Exchangers
202(5)
6.2 Problem Statement
207(1)
6.3 Modeling Using Fluent
207(37)
6.3.1 Geometry
207(19)
6.3.2 Mesh
226(6)
6.3.3 Setup
232(12)
6.4 Verification
244(5)
6.4.1 Grid Independent Study
244(5)
7 Three-Dimensional Fluid Flow and Heat Transfer Modeling in a Heat Sink
249(38)
7.1 Introduction to Heat Sinks
250(2)
7.2 Problem Statement
252(1)
7.3 Modeling using Fluent
253(29)
7.3.1 Import Geometry
254(1)
7.3.2 Create Geometry in Design Modeler
254(15)
7.3.3 Mesh
269(5)
7.3.4 Setup
274(4)
7.3.5 Solution
278(4)
7.4 Verification
282(5)
References
285(2)
A Upwind Schemes to Evaluate the Advection Term 287(4)
B Time Integration Schemes 291(2)
C Instructions to Download ANSYS 293(2)
D SpaceClaim Tutorials 295(38)
Index 333
Imane Khalil is an associate professor of Mechanical Engineering at the University of San Diego. She was born in Beirut, Lebanon and immigrated to the United States in 1989. Imane worked at Sandia National Laboratories in Albuquerque, New Mexico and Livermore, California first as a scientist and then as a manager. She managed the department that performed structural analysis for Curiosity, the rover that landed on Mars in 2012. In addition, Imane was adjunct faculty at the University of New Mexico. In 2014, she joined the University of San Diego to become a full time professor of engineering. Imane is a Fellow member of the American Society of Mechanical Engineering.

Issam Lakkis, Ph.D., is professor and chair of the Mechanical Engineering Department at the American University of Beirut, Beirut, Lebanon. He graduated from AUB with a BE and ME in mechanical Engineering in 1991 and 1993 respectively. He then joined the reacting gas dynamics lab at MIT in 1994 and earned his Ph.D. degree in 2000.  From 2000 till 2003, he worked at Coventor on Computer Aided Design of MEMS and RF Circuits. In 2003, he joined AUB and has been a professor since 2017. He is currently the chair of the Mechanical Engineering department. His research interests span species transport in stochastic fields, with applications to pollution transport in the ocean, atmosphere, and urban environments, development of grid-free computational methods for continuum and non-continuum flows, and modeling, design, analysis and simulation of multi-scale/multi-physics micro-devices.