Muutke küpsiste eelistusi

E-raamat: Computational Hemodynamics - Theory, Modelling and Applications

  • Formaat - PDF+DRM
  • Hind: 196,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book discusses geometric and mathematical models that can be used to study fluid and structural mechanics in the cardiovascular system. Where traditional research methodologies in the human cardiovascular system are challenging due to its invasive nature, several recent advances in medical imaging and computational fluid and solid mechanics modelling now provide new and exciting research opportunities. This emerging field of study is multi-disciplinary, involving numerical methods, computational science, fluid and structural mechanics, and biomedical engineering. Certainly any new student or researcher in this field may feel overwhelmed by the wide range of disciplines that need to be understood.

This unique book is one of the first to bring together knowledge from multiple disciplines, providing a starting point to each of the individual disciplines involved, attempting to ease the steep learning curve. This book presents elementary knowledge on the physiology of the cardiovascular system; basic knowledge and techniques on reconstructing geometric models from medical imaging; mathematics that describe fluid and structural mechanics, and corresponding numerical/computational methods to solve its equations and problems.

Many practical examples and case studies are presented to reinforce best practice guidelines for setting high quality computational models and simulations. These examples contain a large number of images for visualization, to explain cardiovascular physiological functions and disease. The reader is then exposed to some of the latest research activities through a summary of breakthrough research models, findings, and techniques.

The books approach is aimed at students and researchers entering this field from engineering, applied mathematics, biotechnology or medicine, wishing to engage in this emerging and exciting field of computational hemodynamics modelling.

Arvustused

The purpose is to describe geometric and mathematical models that can be used to study fluid and structural mechanics in the cardiovascular system. The book is unique in being one of the first to bring together knowledge from multiple disciplines and present it in a consolidated manner. The audience includes students, health professionals, and researchers entering the emerging and exciting field of computational hemodynamics modeling from engineering, applied mathematics, biotechnology, or medicine. (Pooja Sethi, Doody's Book Reviews, May, 2015)

1 Computational Haemodynamics-An Introduction 1(20)
1.1 What is Computational Haemodynamics (CHD)
1(2)
1.2 Advantages of CHD
3(1)
1.3 Applications in the Cardiovascular System
4(14)
1.3.1 CHD as a Research Tool
4(1)
1.3.2 CHD as a Training Tool
5(1)
1.3.3 Examination of Atherosclerosis
6(2)
1.3.4 Plaque Rupture Risk Assessment
8(1)
1.3.5 Preoperative Assessment of Atherosclerotic Arteries
9(3)
1.3.6 Surgical Treatment of Atherosclerotic Arteries
12(4)
1.3.7 Preoperative Assessment of Aneurysm
16(1)
1.3.8 Assessment of Medical Devices
17(1)
1.4 Summary
18(1)
1.5 Review Questions
19(2)
2 The Human Cardiovascular System 21(22)
2.1 Introduction
21(4)
2.1.1 Functions of the Circulatory System
21(2)
2.1.2 Organization of the Cardiovascular System
23(2)
2.2 Physiology of the Cardiovascular System
25(10)
2.2.1 Anatomy of the Heart
25(1)
2.2.2 Cardiac Cycle
26(1)
2.2.3 Physiology of the Aorta
27(1)
2.2.4 Physiology of the Carotid Bifurcation
28(3)
2.2.5 Physiology of the Coronary Arteries
31(1)
2.2.6 Physiology of the Vascular Network
32(2)
2.2.7 Blood
34(1)
2.3 Disease of the Cardiovascular System
35(6)
2.3.1 Atherosclerosis
35(1)
2.3.2 Calcification of Lesions in Plaque
36(2)
2.3.3 Aneurysm
38(1)
2.3.4 Thrombosis
39(1)
2.3.5 Stroke
40(1)
2.4 Summary
41(1)
2.5 Review Questions
42(1)
3 Geometric Model Reconstruction 43(24)
3.1 Introduction
43(1)
3.2 Medical Image Acquistion
43(3)
3.3 Image Segmentation
46(12)
3.3.1 Segmentation Approaches
47(1)
3.3.2 Threshold Segmentation
47(2)
3.3.3 Edge Based Segmentation
49(2)
3.3.4 Region Based Segmentation
51(3)
3.3.5 Using Specialised Medical Software
54(2)
3.3.6 Surface and Volume Reconstruction
56(2)
3.4 Examples
58(5)
3.4.1 Abdominal Bifurcation
58(2)
3.4.2 Left Atrium
60(2)
3.4.3 Left Ventricle
62(1)
3.5 Summary
63(3)
3.6 Review Questions
66(1)
4 Fundamentals of Haemodynamics 67(28)
4.1 Introduction
67(1)
4.2 Fluid Properties of Blood
67(2)
4.3 Viscosity of Blood
69(2)
4.4 Clinical Relevance of Blood Viscosity
71(1)
4.5 Blood Flow Properties
72(4)
4.5.1 Shear Force
72(1)
4.5.2 Pressure Force
73(2)
4.5.3 Laminar and Turbulent Flow
75(1)
4.6 Introduction to Internal Pipe Flow
76(10)
4.6.1 Developing and Fully Developed Regions
76(2)
4.6.2 Laminar and Turbulent Velocity Profiles in a Pipe
78(3)
4.6.3 Poiseulle's Law
81(2)
4.6.4 Bernoulli's Equation
83(2)
4.6.5 Pressure Drop Estimates
85(1)
4.7 Fluid Dynamics of Blood Flow Examples
86(7)
4.7.1 Carotid Artery Bifurcation
86(2)
4.7.2 Carotid Artery Bifurcation with Stenosis
88(1)
4.7.3 Curved Flow in Aortic Arch
89(2)
4.7.4 Aneursym in Abdominal Aorta
91(2)
4.8 Summary
93(1)
4.9 Review Questions
94(1)
5 Computational Fluid Structure Interaction 95(60)
5.1 Introduction
95(1)
5.2 Introduction to Fluid Dynamics
95(16)
5.2.1 Mass Conservation
96(4)
5.2.2 Momentum Conservation
100(6)
5.2.3 Introduction to Turbulence
106(5)
5.3 Introduction to Solid Mechanics
111(7)
5.3.1 Elasticity
111(2)
5.3.2 Plane Stress
113(1)
5.3.3 Structural Dynamics Equations
114(2)
5.3.4 Elastic Properties of Arteries
116(2)
5.4 Computational Methods
118(19)
5.4.1 Finite Difference Method
118(4)
5.4.2 Finite Volume Method
122(2)
5.4.3 One-Dimensional Steady StateConvection-Diffusion in Finite Volume
124(6)
5.4.4 Finite Element Method (FEM)
130(7)
5.5 Numerical Solution of Algebraic Systems
137(9)
5.5.1 Direct Solution Methods
138(3)
5.5.2 Iterative Methods
141(2)
5.5.3 Solution for a One-Dimensional Steady Diffusion Equation
143(3)
5.6 Fluid-Structure Interactions (FSI)
146(6)
5.6.1 FSI in Computational Haemodynamics
146(2)
5.6.2 Coupling
148(3)
5.6.3 Stability and Convergence
151(1)
5.7 Summary
152(1)
5.8 Review Questions
153(2)
6 Generation of Computational Mesh for Haemodynamics Analysis 155(28)
6.1 Introduction
155(2)
6.1.1 Meshing Topology
156(1)
6.2 Mesh Configurations
157(11)
6.2.1 Structured Mesh
157(1)
6.2.2 Body-Fitted Mesh
157(3)
6.2.3 Multi-Block Mesh
160(2)
6.2.4 Unstructured Mesh
162(1)
6.2.5 Delaunay Triangulation
163(1)
6.2.6 Quadtree/Octree Subdivision
164(2)
6.2.7 Advancing Front Connectivity
166(1)
6.2.8 Comparisons Between Structured and Unstructured Mesh
166(1)
6.2.9 Mesh Terminology
167(1)
6.3 Dynamic Meshing
168(1)
6.4 Mesh Generation
169(6)
6.4.1 Mesh Quality
169(2)
6.4.2 Mesh Design Strategy
171(1)
6.4.3 Local Refinement and Solution Adaptation
172(1)
6.4.4 Mesh Independence
173(2)
6.5 Meshing Examples
175(5)
6.5.1 Flow in Blood Vessel Mesh
175(1)
6.5.2 Blocking Strategies
175(2)
6.5.3 Stenosed Artery Step-By-Step
177(1)
6.5.4 Left Coronary Artery Bifurcation Step-By-Step
178(2)
6.6 Summary
180(1)
6.7 Review Questions
180(3)
7 Case Studies of the Human Cardiovascular System 183(58)
7.1 Introduction
183(1)
7.2 Haemodynamics of a Stenosed Carotid Bifurcation
183(24)
7.2.1 Physiologically Realistic Geometrical Reconstruction from MRI
184(2)
7.2.2 Computational Mesh Generation
186(1)
7.2.3 Computational Fluid Modelling
187(1)
7.2.4 Experimental Validation
188(6)
7.2.5 Flow Visualisation
194(4)
7.2.6 Comments on Modelling Issues
198(4)
7.2.7 Downstream peripheral vascular impedance modelling
202(4)
7.2.8 Closure
206(1)
7.3 Comparison Analysis of Patient Specific Carotid Bifurcation Models
207(7)
7.3.1 Medical Image Reconstruction of Patient-Specific Arteries
207(1)
7.3.2 Comparison of Anatomical Geometries
208(1)
7.3.3 Comparison of Wall Shear Stress Computational Models
209(2)
7.3.4 Comparison of Haemodynamic Properties
211(2)
7.3.5 Closure
213(1)
7.4 Analysis of Stented Artery Based on Intra-Aneurysmal Flow Simulation
214(7)
7.4.1 Configuration of Aneurysm Stenting
214(1)
7.4.2 Modes of Aneurysmal Flow
215(1)
7.4.3 Computational Modelling and Numerical Details
216(1)
7.4.4 Aneurysmal Flow Results
217(2)
7.4.5 Parametric Study for Design of Stent in Aneurysm
219(1)
7.4.6 In-Vitro Flow Measurement of an Aneurysm, Based on PIV
220(1)
7.4.7 Closure
221(1)
7.5 Analysis of Blood Flow in Cardiac Chamber
221(9)
7.5.1 Introduction to Heart Chamber Flow Visualisation
221(1)
7.5.2 Application of Medical Imaging in Computational Heart Modelling
222(5)
7.5.3 Comparison of CFD and PC-MRI Vorticity Fields
227(1)
7.5.4 Computational Haemodynamics Analysis of Heart Chamber
227(2)
7.5.5 Closure
229(1)
7.6 Intra-Atrial Flow and Mitral Plane Velocity Profile
230(8)
7.6.1 Left Atrium Models
230(2)
7.6.2 Computational Model Setup
232(1)
7.6.3 Results
233(4)
7.6.4 Closure
237(1)
7.7 Summary
238(1)
7.8 Review Questions
238(3)
8 Applications of FSI for Cardiovascular Haemodynamics 241(70)
8.1 Introduction
241(1)
8.2 Flow in an Idealised Stenotic Artery Bifurcation
241(10)
8.2.1 Computational Considerations
241(2)
8.2.2 Simulation Details
243(1)
8.2.3 FSI Analysis of Diseased Carotid Bifurcation
244(5)
8.2.4 Comparison Between FSI and Non-FSI Models
249(2)
8.2.5 Closure
251(1)
8.3 Flow in a Realistic Carotid Artery Bifurcation
251(6)
8.3.1 Geometric Models and Material Properties
252(2)
8.3.2 Haemodynamics Inside the Healthy Carotid Artery
254(2)
8.3.3 Closure
256(1)
8.4 Flow in the Left Coronary Artery
257(9)
8.4.1 Geometric Models and Material Properties
257(1)
8.4.2 Mesh Generation and Physiological Boundary Conditions
258(2)
8.4.3 Mechanical Results Analysis
260(3)
8.4.4 Haemodynamic Results Analysis
263(1)
8.4.5 Closure
264(2)
8.5 Analysis of Calcified Plaque
266(24)
8.5.1 Calcified Plaque Models
266(4)
8.5.2 Boundary Conditions and Material Properties
270(4)
8.5.3 Two-Dimensional Structural Modelling
274(2)
8.5.4 Three-Dimensional Fluid-Structure Interaction Modelling
276(6)
8.5.5 Correlations Between Plaque Progression and Wall Shear Stress
282(5)
8.5.6 Mechanical Stresses in 2D Carotid Plaque
287(2)
8.5.7 Closure
289(1)
8.6 Flow in a Realistic Aortic Aneurysm
290(6)
8.6.1 Geometric Models and Material Properties
291(1)
8.6.2 Haemodynamics Inside the Abdominal Aortic Aneurysm
291(4)
8.6.3 Closure
295(1)
8.7 Coronary and Abdominal Arterial Bypass Grafts
296(8)
8.7.1 Geometric Configurations and Computational Details
297(1)
8.7.2 Flow Patterns and Wall Deformation in Coronary Bypass Graft
298(2)
8.7.3 Flow Patterns and Wall Deformation in Abdominal Arterial Bypass Grafts
300(1)
8.7.4 Closure
301(3)
8.8 Mitral Valve Dynamics
304(4)
8.8.1 Introduction
304(1)
8.8.2 Asymmetric Mitral Valve Dynamics During Diastolic Filling
305(3)
8.8.3 Closure
308(1)
8.9 Summary
308(3)
9 Advanced Topics and Future Trends 311(16)
9.1 Introduction
311(1)
9.2 Blood Rheology
311(4)
9.2.1 Multiphase Flow
311(2)
9.2.2 Direct Numerical Simulations of Blood Cells
313(2)
9.2.3 Blood Rheology in Large Arteries Using Lattice Boltzman
315(1)
9.3 Medical Imaging for Flow Validation and Analysis
315(4)
9.3.1 Imaging for Flow Validation
315(1)
9.3.2 Imaging for Flow Analysis
316(1)
9.3.3 MRI Flow Imaging
317(2)
9.4 Ventricular Assist Devices
319(2)
9.5 Simulation-Based Virtual Surgery
321(2)
9.6 Advanced Heart Valve Modelling
323(2)
9.7 Summary
325(2)
Appendix 327(4)
Bibliography 331(16)
Index 347