Foreword |
|
xiii | |
Preface |
|
xv | |
Acknowledgements |
|
xix | |
|
1 Introduction to Computational Intelligence |
|
|
1 | (18) |
|
1.1 Computational Intelligence |
|
|
1 | (1) |
|
1.2 Paradigms of Computational Intelligence |
|
|
2 | (1) |
|
1.3 Approaches to Computational Intelligence |
|
|
3 | (8) |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.3.3 Evolutionary Computing |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.3.5 Probabilistic Methods |
|
|
6 | (1) |
|
|
7 | (4) |
|
1.4 Synergies of Computational Intelligence Techniques |
|
|
11 | (1) |
|
1.5 Applications of Computational Intelligence |
|
|
12 | (1) |
|
1.6 Grand Challenges of Computational Intelligence |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (5) |
|
|
15 | (4) |
|
2 Introduction to Fuzzy Logic |
|
|
19 | (46) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (5) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (2) |
|
|
26 | (1) |
|
|
27 | (2) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
2.6 Operations on Fuzzy Sets |
|
|
29 | (4) |
|
|
33 | (2) |
|
2.7.1 Features of Linguistic Variables |
|
|
33 | (2) |
|
|
35 | (2) |
|
|
37 | (2) |
|
2.9.1 Compositional Rule of Inference |
|
|
38 | (1) |
|
|
39 | (4) |
|
|
40 | (1) |
|
|
40 | (1) |
|
2.10.3 Aggregation of Rules |
|
|
41 | (2) |
|
|
43 | (1) |
|
|
44 | (4) |
|
|
48 | (6) |
|
2.13.1 Mamdani Fuzzy Inference |
|
|
49 | (1) |
|
2.13.2 Sugeno Fuzzy Inference |
|
|
50 | (3) |
|
2.13.3 Tsukamoto Fuzzy Inference |
|
|
53 | (1) |
|
|
54 | (7) |
|
|
61 | (4) |
|
|
61 | (4) |
|
3 Fuzzy Systems and Applications |
|
|
65 | (38) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (8) |
|
3.3.1 Structure Identification |
|
|
67 | (3) |
|
3.3.2 Parameter Identification |
|
|
70 | (1) |
|
3.3.3 Construction of Parameterized Membership Functions |
|
|
70 | (5) |
|
|
75 | (6) |
|
|
75 | (1) |
|
3.4.2 Inference Mechanism |
|
|
76 | (2) |
|
|
78 | (2) |
|
|
80 | (1) |
|
3.5 Design of Fuzzy Controller |
|
|
81 | (16) |
|
3.5.1 Input/Output Selection |
|
|
82 | (1) |
|
3.5.2 Choice of Membership Functions |
|
|
82 | (1) |
|
3.5.3 Creation of Rule Base |
|
|
82 | (1) |
|
3.5.4 Types of Fuzzy Controller |
|
|
83 | (14) |
|
3.6 Modular Fuzzy Controller |
|
|
97 | (2) |
|
|
99 | (4) |
|
|
100 | (3) |
|
|
103 | (56) |
|
|
103 | (3) |
|
4.2 Artificial Neuron Model |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
108 | (16) |
|
4.4.1 Feedforward Networks |
|
|
109 | (15) |
|
4.5 Learning in Neural Networks |
|
|
124 | (25) |
|
4.5.1 Supervised Learning |
|
|
124 | (14) |
|
4.5.2 Unsupervised Learning |
|
|
138 | (11) |
|
4.6 Recurrent Neural Networks |
|
|
149 | (6) |
|
|
150 | (2) |
|
|
152 | (1) |
|
|
153 | (2) |
|
|
155 | (4) |
|
|
156 | (3) |
|
5 Neural Systems and Applications |
|
|
159 | (24) |
|
|
159 | (1) |
|
5.2 System Identification and Control |
|
|
160 | (3) |
|
|
160 | (1) |
|
5.2.2 System Identification |
|
|
160 | (1) |
|
|
161 | (2) |
|
5.3 Neural Networks for Control |
|
|
163 | (16) |
|
5.3.1 System Identification for Control Design |
|
|
164 | (1) |
|
5.3.2 Neural Networks for Control Design |
|
|
165 | (14) |
|
|
179 | (4) |
|
|
180 | (3) |
|
|
183 | (56) |
|
|
183 | (1) |
|
6.2 Evolutionary Computing |
|
|
183 | (2) |
|
6.3 Terminologies of Evolutionary Computing |
|
|
185 | (9) |
|
6.3.1 Chromosome Representation |
|
|
185 | (1) |
|
|
186 | (5) |
|
|
191 | (2) |
|
6.3.4 Evaluation (or Fitness) Functions |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
194 | (14) |
|
6.4.1 Selection Operators |
|
|
195 | (3) |
|
6.4.2 Crossover Operators |
|
|
198 | (8) |
|
|
206 | (2) |
|
6.5 Performance Measures of EA |
|
|
208 | (1) |
|
6.6 Evolutionary Algorithms |
|
|
209 | (25) |
|
6.6.1 Evolutionary Programming |
|
|
209 | (4) |
|
6.6.2 Evolution Strategies |
|
|
213 | (5) |
|
|
218 | (5) |
|
6.6.4 Genetic Programming |
|
|
223 | (7) |
|
6.6.5 Differential Evolution |
|
|
230 | (3) |
|
|
233 | (1) |
|
|
234 | (5) |
|
|
235 | (4) |
|
|
239 | (26) |
|
|
239 | (4) |
|
7.2 Multi-objective Optimization |
|
|
243 | (7) |
|
7.2.1 Vector-Evaluated GA |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
247 | (1) |
|
7.2.4 Non-dominated Sorting GA |
|
|
248 | (1) |
|
7.2.5 Strength Pareto Evolutionary Algorithm |
|
|
249 | (1) |
|
|
250 | (6) |
|
7.3.1 Cooperative Co-evolution |
|
|
253 | (2) |
|
7.3.2 Competitive Co-evolution |
|
|
255 | (1) |
|
7.4 Parallel Evolutionary Algorithm |
|
|
256 | (9) |
|
|
257 | (1) |
|
7.4.2 Migration (or Island) Model GA |
|
|
258 | (1) |
|
|
259 | (2) |
|
|
261 | (1) |
|
|
262 | (3) |
|
8 Evolutionary Fuzzy Systems |
|
|
265 | (42) |
|
|
265 | (2) |
|
8.2 Evolutionary Adaptive Fuzzy Systems |
|
|
267 | (20) |
|
8.2.1 Evolutionary Tuning of Fuzzy Systems |
|
|
268 | (13) |
|
8.2.2 Evolutionary Learning of Fuzzy Systems |
|
|
281 | (6) |
|
8.3 Objective Functions and Evaluation |
|
|
287 | (3) |
|
8.3.1 Objective Functions |
|
|
287 | (2) |
|
|
289 | (1) |
|
8.4 Fuzzy Adaptive Evolutionary Algorithms |
|
|
290 | (17) |
|
8.4.1 Fuzzy Logic-Based Control of EA Parameters |
|
|
292 | (10) |
|
8.4.2 Fuzzy Logic-Based Genetic Operators of EA |
|
|
302 | (1) |
|
|
303 | (4) |
|
9 Evolutionary Neural Networks |
|
|
307 | (50) |
|
|
307 | (2) |
|
9.2 Supportive Combinations |
|
|
309 | (9) |
|
9.2.1 NN-EA Supportive Combination |
|
|
309 | (1) |
|
9.2.2 EA-NN Supportive Combination |
|
|
310 | (8) |
|
9.3 Collaborative Combinations |
|
|
318 | (25) |
|
9.3.1 EA for NN Connection Weight Training |
|
|
319 | (7) |
|
9.3.2 EA for NN Architectures |
|
|
326 | (12) |
|
9.3.3 EA for NN Node Transfer Functions |
|
|
338 | (3) |
|
9.3.4 EA for NN Weight, Architecture and Transfer Function Training |
|
|
341 | (2) |
|
9.4 Amalgamated Combination |
|
|
343 | (2) |
|
9.5 Competing Conventions |
|
|
345 | (12) |
|
|
351 | (6) |
|
|
357 | (58) |
|
|
357 | (2) |
|
10.2 Combination of Neural and Fuzzy Systems |
|
|
359 | (1) |
|
10.3 Cooperative Neuro-Fuzzy Systems |
|
|
360 | (9) |
|
10.3.1 Cooperative FS-NN Systems |
|
|
361 | (1) |
|
10.3.2 Cooperative NN-FS Systems |
|
|
362 | (7) |
|
10.4 Concurrent Neuro-Fuzzy Systems |
|
|
369 | (1) |
|
10.5 Hybrid Neuro-Fuzzy Systems |
|
|
369 | (35) |
|
10.5.1 Fuzzy Neural Networks with Mamdani-Type Fuzzy Inference System |
|
|
370 | (2) |
|
10.5.2 Fuzzy Neural Networks with Takagi-Sugeno-type Fuzzy Inference System |
|
|
372 | (1) |
|
10.5.3 Fuzzy Neural Networks with Tsukamoto-Type Fuzzy Inference System |
|
|
373 | (4) |
|
10.5.4 Neural Network-Based Fuzzy System (Pi-Sigma Network) |
|
|
377 | (3) |
|
10.5.5 Fuzzy-Neural System Architecture with Ellipsoid Input Space |
|
|
380 | (2) |
|
10.5.6 Fuzzy Adaptive Learning Control Network (FALCON) |
|
|
382 | (2) |
|
10.5.7 Approximate Reasoning-Based Intelligent Control (ARIC) |
|
|
384 | (4) |
|
10.5.8 Generalized ARIC (GARIC) |
|
|
388 | (5) |
|
10.5.9 Fuzzy Basis Function Networks (FBFN) |
|
|
393 | (3) |
|
|
396 | (1) |
|
10.5.11 Combination of Fuzzy Inference and Neural Network in Fuzzy Inference Software (FINEST) |
|
|
397 | (3) |
|
10.5.12 Neuro-Fuzzy Controller (NEFCON) |
|
|
400 | (1) |
|
10.5.13 Self-constructing Neural Fuzzy Inference Network (SONFIN) |
|
|
401 | (3) |
|
10.6 Adaptive Neuro-Fuzzy System |
|
|
404 | (5) |
|
10.6.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) |
|
|
404 | (3) |
|
10.6.2 Coactive Neuro-Fuzzy Inference System (CANFIS) |
|
|
407 | (2) |
|
|
409 | (2) |
|
|
411 | (4) |
|
|
412 | (3) |
Appendix A MATLAB® Basics |
|
415 | (18) |
Appendix B MATLAB® Programs for Fuzzy Logic |
|
433 | (10) |
Appendix C MATLAB® Programs for Fuzzy Systems |
|
443 | (18) |
Appendix D MATLAB® Programs for Neural Systems |
|
461 | (12) |
Appendix E MATLAB® Programs for Neural Control Design |
|
473 | (16) |
Appendix F MATLAB® Programs for Evolutionary Algorithms |
|
489 | (8) |
Appendix G MATLAB® Programs for Neuro-Fuzzy Systems |
|
497 | (10) |
Index |
|
507 | |