Muutke küpsiste eelistusi

E-raamat: Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This research book presents the use of computational intelligence paradigms in the bioprocess-related tasks of modeling, supervision, monitoring and control, diagnostic, learning and optimization. All have applications to a wide variety of other areas.



Computational Intelligence (CI) and Bioprocess are well-established research areas which have much to offer each other. Under the perspective of the CI area, Biop- cess can be considered a vast application area with a growing number of complex and challenging tasks to be dealt with, whose solutions can contribute to boosting the development of new intelligent techniques as well as to help the refinement and s- cialization of many of the already existing techniques. Under the perspective of the Bioprocess area, CI can be considered a useful repertoire of theories, methods and techniques that can contribute and offer interesting alternative approaches for solving many of its problems, particularly those hard to solve using conventional techniques. Although throughout the past years CI and Bioprocess areas have accumulated substantial specific knowledge and progress has been quick and with a high degree of success, we believe there is still a long way to go in order to use the potentialities of the available CI techniques and knowledge at their full extent, as tools for supporting problem solving in bioprocesses. One of the reasons is the fact that both areas have progressed steadily and have been continuously accumulating and refining specific knowledge; another reason is the high level of technical expertise demanded by each of them. The acquisition of technical skills, experience and good insights in either of the two areas is very demanding and a hard task to be accomplished by any professional.
Computational Intelligence Techniques as Tools for Bioprocess Modelling,
Optimization, Supervision and Control.- Software Sensors and Their
Applications in Bioprocess.- Monitoring of Bioprocesses: Mechanistic and
Data-Driven Approaches.- Novel Computational Methods for Modeling and Control
in Chemical and Biochemical Process Systems.- Computational Intelligence
Techniques for Supervision and Diagnosis of Biological Wastewater Treatment
Systems.- Multiobjective Genetic Algorithms for the Optimisation of
Wastewater Treatment Processes.- Data Reconciliation Using Neural Networks
for the Determination of KLa.- A Computational Intelligent Based Approach for
the Development of a Minimal Defined Medium: Application to Human
Interleukin-3 Production by Streptomyces lividans 66.- Bioprocess Modelling
for Learning Model Predictive Control (L-MPC).- Performance Monitoring and
Batch to Batch Control of Biotechnological Processes.- Modelling of
Biotechnological Processes An Approach Based on Artificial Neural Networks.