Muutke küpsiste eelistusi

E-raamat: Computational Intelligence Techniques in Diagnosis of Brain Diseases

  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book highlights a new biomedical signal processing method of extracting a specific underlying signal from possibly noisy multi-channel recordings, and shows that the method is suitable for extracting independent components from the measured electroencephalogram (EEG) signal. The system efficiently extracts memory spindles and is also effective in Alzheimer seizures. Current developments in computer hardware and signal processing have made it possible for EEG signals or “brain waves” to communicate between humans and computers – an area that can be extended for use in this domain.

1 Introduction
1(12)
1.1 Brain Signals Processing (EEG)
1(1)
1.2 Research Background
2(3)
1.3 The Necessity for Automated Classification
5(1)
1.4 EEG Artifacts and Their Prevention
5(2)
1.5 EEG Classification Methods (Literature Survey)
7(1)
1.6 Key Problems in EEG Classification Methods
8(1)
1.7 A New Framework for Handling Uncertainty and --- Artefacts in EEG Classification
9(4)
References
11(2)
2 Analysis of Electroencephalogram (EEG) Using ANN
13(20)
2.1 Introduction
13(1)
2.2 Proposed System and Specification
14(5)
2.2.1 Digital Signal Transformation and Denoising
14(1)
2.2.2 Data Hiding and Retrieval
14(2)
2.2.3 Signal Compression
16(2)
2.2.4 Recognition of Brain Signals Using Neural Network
18(1)
2.3 Literature Review
19(7)
2.3.1 History
19(3)
2.3.2 Artificial Neural Network
22(1)
2.3.3 Neural Network Software
23(2)
2.3.4 Current Research
25(1)
2.4 System Architecture
26(1)
2.5 The Inspiration
27(1)
2.6 Problem Description
27(1)
2.7 System Implementation
28(2)
2.7.1 Using Back Propagation Network
28(1)
2.7.2 The Pre-processing
29(1)
2.8 Summary
30(3)
References
31(2)
3 Classification and Analysis of EEG Using SVM and MRE
33(14)
3.1 Introduction
33(1)
3.2 Resources and Techniques
34(7)
3.2.1 Attainment of EEG Data
34(1)
3.2.2 Fuzzy System as a Pre Classifier
35(1)
3.2.3 Fuzzy Membership Functions
36(1)
3.2.4 Fuzzy Rule Set
36(1)
3.2.5 Estimation of Risk Level in Fuzzy Outputs
37(1)
3.2.6 Binary Representation of Risk Level Patterns
38(1)
3.2.7 Support Vector Machine as Post Classifier
39(2)
3.3 Support Vector Mechanism for Optimization of Fuzzy Outputs
41(3)
3.3.1 Minimum Relative Entropy (MRE) for Optimization of Fuzzy Outputs
42(1)
3.3.2 Algorithm for MRE Optimization
43(1)
3.4 Result and Discussion
44(1)
3.4.1 Performance Index
44(1)
3.4.2 Quality Value
45(1)
3.5 Summary
45(2)
References
46(1)
4 Intelligent Technique to Identify Epilepsy Captures Using Fuzzy System
47(14)
4.1 Introduction
47(1)
4.2 Related Work
48(4)
4.2.1 Feature Extraction
49(1)
4.2.2 Average Amplitude
50(1)
4.2.3 Rhythmicity
50(1)
4.2.4 Entropy
51(1)
4.2.5 Domain Frequency
51(1)
4.3 Fuzzy C-Means Clustering
52(1)
4.4 Firefly Algorithm
52(3)
4.5 Fuzzy Firefly Algorithm
55(1)
4.6 Results and Discussion
56(4)
4.6.1 Sensitivity
58(1)
4.6.2 Motivation and Advantage of Using Fuzzy Logic
59(1)
4.7 Summary
60(1)
References
60(1)
5 Analysis of EEG to Find Alzheimer's Disease Using Intelligent Techniques
61
5.1 Introduction
61(2)
5.2 Techniques and Resources
63(6)
5.2.1 Signal Attainment and EEG Database
63(1)
5.2.2 Preprocessing
64(1)
5.2.3 Segmentation
65(1)
5.2.4 Feature Extraction
66(1)
5.2.5 Neural Network Classifier
67(1)
5.2.6 Validation
68(1)
5.3 Summary
69
References
69
Dr. Sasikumar Gurumurthy is a professor at the Department of Computer Science and Systems engineering at Sree Vidyanikethan Engineering College in Tirupati. His current interests include soft computing and artificial intelligence in biomedical engineering, human and machine interaction and applications of intelligent system techniques, new user interfaces, brain-based interactions, human-centric computing, fuzzy sets and systems, image processing, cloud computing, content-based learning and social network analysis.

Dr Naresh Babu Muppalaneni is an associate professor at the Department of Computer Science and Systems Engineering at Sree Vidhyanikethan Engineering College in Tirupati. He has 10 years of teaching and research experience. He received a research grant from DST under the Young Scientist scheme to work on Identifying single drug multiple targets for diabetes. His research interests are cryptology, computer networks and computational systems biology.

Xiao-Zhi Gao received his B.Sc. and M.Sc. degrees from the Harbin Institute of Technology, China in 1993 and 1996, respectively. He earned a D.Sc. (Tech.) degree from the Helsinki University of Technology, Finland in 1999. He is currently a visiting researcher at the Machine Vision and Pattern Recognition Laboratory, Lappeenranta University of Technology, Finland. He is also a guest professor at Beijing Normal University, Harbin Institute of Technology, and Beijing City University, China. Dr. Gao has published more than 150 technical papers in refereed journals and for international conferences. He is an Associate Editor of the Journal of Intelligent Automation and Soft Computing and an editorial board member of the Journal of Applied Soft Computing, International Journal of Bio-Inspired Computation, and Journal of Hybrid Computing Research. Dr. Gao was the General Chair of the 2005 IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications. His current research interests includeneural networks, fuzzy logic, evolutionary computing, swarm intelligence, and artificial immune systems, together with their applications in industrial electronics.