Preface |
|
xix | |
Author |
|
xxiii | |
Chapter 1 Introduction |
|
1 | (10) |
|
1.1 Computational materials science |
|
|
1 | (3) |
|
1.1.1 Human beings versus matter |
|
|
1 | (2) |
|
1.1.2 Computational materials science |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
1.2 Methods in computational materials science |
|
|
4 | (4) |
|
1.2.1 Basic procedures of computational materials science |
|
|
5 | (1) |
|
1.2.2 Finite element analysis |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.2.5 First-principles methods (ab initio methods) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (2) |
Chapter 2 Molecular dynamics |
|
11 | (36) |
|
|
12 | (3) |
|
|
12 | (1) |
|
2.1.2 Classical mechanics |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (9) |
|
|
17 | (2) |
|
2.2.2 Embedded atom method potentials |
|
|
19 | (3) |
|
|
22 | (1) |
|
2.2.4 Potentials for ionic solids |
|
|
23 | (1) |
|
2.2.5 Reactive force field potentials |
|
|
24 | (1) |
|
2.3 Solutions for Newton's equations of motion |
|
|
24 | (5) |
|
|
24 | (2) |
|
|
26 | (1) |
|
2.3.3 Velocity Verlet algorithm |
|
|
27 | (1) |
|
2.3.4 Predictor-corrector algorithm |
|
|
27 | (2) |
|
|
29 | (7) |
|
|
29 | (3) |
|
|
29 | (2) |
|
2.4.1.2 Periodic boundary conditions |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (4) |
|
2.4.2.1 Number of atoms (system size) |
|
|
33 | (1) |
|
2.4.2.2 Initial positions and velocities |
|
|
33 | (1) |
|
|
33 | (1) |
|
2.4.2.4 Total simulation time |
|
|
34 | (1) |
|
|
34 | (2) |
|
2.5 Integration/equilibration |
|
|
36 | (2) |
|
2.5.1 Temperature and pressure control |
|
|
36 | (1) |
|
2.5.2 Minimization in a static MD run |
|
|
37 | (1) |
|
2.5.2.1 Steepest-descent method |
|
|
37 | (1) |
|
2.5.2.2 Conjugate gradients method |
|
|
38 | (1) |
|
|
38 | (6) |
|
|
38 | (2) |
|
2.6.1.1 Conservation of energy |
|
|
38 | (1) |
|
2.6.1.2 Confirmation of global minimum |
|
|
39 | (1) |
|
2.6.1.3 Time averages under the ergodic hypothesis |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
2.6.3 Structural properties |
|
|
41 | (2) |
|
2.6.3.1 Equilibrium lattice constant, cohesive energy |
|
|
41 | (1) |
|
|
41 | (1) |
|
2.6.3.3 Thermal expansion coefficient |
|
|
42 | (1) |
|
2.6.3.4 Radial distribution function |
|
|
42 | (1) |
|
2.6.4 Mean-square displacement |
|
|
43 | (1) |
|
2.6.5 Energetics, thermodynamic properties, and others |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
Chapter 3 MD exercises with XMD and LAMMPS |
|
47 | (52) |
|
3.1 Potential curve of Al |
|
|
47 | (5) |
|
|
48 | (2) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (2) |
|
3.1.3.1 Potential energy curve |
|
|
51 | (1) |
|
3.2 Melting of Ni cluster |
|
|
52 | (3) |
|
|
52 | (1) |
|
|
53 | (2) |
|
3.2.2.1 Visualization with MDL ChimeSP6 |
|
|
54 | (1) |
|
3.3 Sintering of Ni nanoparticles |
|
|
55 | (3) |
|
|
55 | (2) |
|
|
57 | (1) |
|
3.4 Speed distribution of Ar gas: A computer experiment |
|
|
58 | (4) |
|
|
60 | (1) |
|
|
61 | (1) |
|
3.5 SiC deposition on Si(001) |
|
|
62 | (4) |
|
|
62 | (3) |
|
|
65 | (1) |
|
3.6 Yield mechanism of an Au nanowire |
|
|
66 | (3) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
3.7 Nanodroplet of water wrapped by a graphene nanoribbon |
|
|
69 | (5) |
|
|
69 | (3) |
|
3.7.1.1 Positions file (data.C-H2O) |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
3.8 Carbon nanotube tension |
|
|
74 | (5) |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (4) |
|
|
79 | (1) |
|
|
79 | (3) |
|
|
82 | (1) |
|
3.10 Si-CNT composite under tension |
|
|
83 | (8) |
|
|
83 | (2) |
|
|
85 | (1) |
|
|
85 | (4) |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
91 | (4) |
|
|
91 | (1) |
|
|
92 | (2) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (3) |
Chapter 4 First-principles methods |
|
99 | (32) |
|
4.1 Quantum mechanics: The beginning |
|
|
100 | (7) |
|
4.1.1 Niels Bohr and the quantum nature of electrons |
|
|
101 | (2) |
|
4.1.2 De Broglie and the dual nature of electrons |
|
|
103 | (1) |
|
4.1.3 Schrodinger and the wave equation |
|
|
104 | (1) |
|
4.1.4 Heisenberg and the uncertain nature of electrons |
|
|
105 | (1) |
|
|
106 | (1) |
|
4.2 Schrodinger wave equation |
|
|
107 | (13) |
|
4.2.1 Simplifying the problem |
|
|
107 | (2) |
|
4.2.1.1 Forget about gravity, relativity, and time |
|
|
107 | (1) |
|
4.2.1.2 Forget about nuclei and spin |
|
|
108 | (1) |
|
4.2.1.3 Forget about the excited states |
|
|
109 | (1) |
|
4.2.1.4 Use of atomic units |
|
|
109 | (1) |
|
4.2.2 Time-independent electronic wave equation |
|
|
109 | (1) |
|
4.2.3 Energy operator: Hamiltonian H |
|
|
110 | (2) |
|
4.2.4 Waves and wave function |
|
|
112 | (3) |
|
|
113 | (1) |
|
|
114 | (1) |
|
4.2.4.3 Superposition principle of waves |
|
|
114 | (1) |
|
4.2.4.4 Indistinguishability of electrons |
|
|
115 | (1) |
|
|
115 | (1) |
|
4.2.6 Solutions of Schrodinger wave equation: An electron in a well |
|
|
116 | (4) |
|
4.2.6.1 An electron in a one-dimensional infinite well |
|
|
116 | (3) |
|
4.2.6.2 An electron in a one-dimensional well with a finite potential |
|
|
119 | (1) |
|
|
119 | (1) |
|
4.2.6.4 Degenerate states |
|
|
120 | (1) |
|
4.3 Early first-principles calculations |
|
|
120 | (8) |
|
|
120 | (1) |
|
4.3.2 Hartree method: One-electron model |
|
|
121 | (1) |
|
4.3.3 Hartree-Fock method |
|
|
122 | (10) |
|
4.3.3.1 Expression for Psi(r) |
|
|
122 | (1) |
|
4.3.3.2 Orthonormality of wave functions |
|
|
123 | (1) |
|
|
124 | (2) |
|
4.3.3.4 Calculation for E |
|
|
126 | (1) |
|
4.3.3.5 Variational approach to the search for the ground-state energy |
|
|
127 | (1) |
|
4.3.3.6 Self-consistent procedure |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
129 | (2) |
Chapter 5 Density functional theory |
|
131 | (42) |
|
|
132 | (6) |
|
|
133 | (2) |
|
5.1.1.1 Electron density in DFT |
|
|
135 | (1) |
|
5.1.2 Hohenberg-Kohn theorems |
|
|
135 | (3) |
|
5.1.2.1 Electron density as central player |
|
|
135 | (1) |
|
5.1.2.2 Search for the ground-state energy |
|
|
136 | (2) |
|
|
138 | (2) |
|
5.2.1 One-electron representations |
|
|
138 | (1) |
|
5.2.2 One-electron system replacing n-electron system |
|
|
139 | (1) |
|
|
140 | (9) |
|
|
141 | (4) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
142 | (1) |
|
5.3.1.4 Exchange-correlation energy |
|
|
143 | (1) |
|
5.3.1.5 Magnitudes of each energy term |
|
|
144 | (1) |
|
5.3.2 Functional derivatives |
|
|
145 | (2) |
|
5.3.3 Kohn-Sham equations |
|
|
147 | (2) |
|
|
148 | (1) |
|
|
149 | (1) |
|
5.4 Exchange-correlation functionals |
|
|
149 | (13) |
|
5.4.1 Exchange-correlation hole |
|
|
150 | (3) |
|
|
151 | (1) |
|
|
152 | (1) |
|
5.4.1.3 Exchange-correlation hole |
|
|
152 | (1) |
|
5.4.2 Local density approximation |
|
|
153 | (3) |
|
5.4.2.1 Homogeneous electron gas |
|
|
154 | (1) |
|
|
154 | (1) |
|
5.4.2.3 Correlation energy |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
156 | (1) |
|
5.4.3 Generalized gradient approximation |
|
|
156 | (3) |
|
|
158 | (1) |
|
|
158 | (1) |
|
5.4.4 Other XC functionals |
|
|
159 | (1) |
|
|
160 | (2) |
|
5.4.5.1 General trends of GGA |
|
|
160 | (1) |
|
5.4.5.2 Limitations of GGA: Strongly correlated systems |
|
|
161 | (1) |
|
5.4.5.3 Limitations of GGA: Band gap underestimation |
|
|
161 | (1) |
|
5.5 Solving Kohn-Sham equations |
|
|
162 | (4) |
|
|
162 | (2) |
|
|
162 | (1) |
|
5.5.1.2 Variational principle |
|
|
163 | (1) |
|
|
163 | (1) |
|
5.5.2 Direct diagonalization |
|
|
164 | (1) |
|
5.5.3 Iterative diagonalization |
|
|
164 | (2) |
|
5.5.3.1 Total energy and other properties |
|
|
165 | (1) |
|
5.6 DFT extensions and limitations |
|
|
166 | (4) |
|
|
166 | (3) |
|
5.6.1.1 Spin-polarized DFT |
|
|
167 | (1) |
|
5.6.1.2 DFT with fractional occupancies |
|
|
167 | (1) |
|
5.6.1.3 DFT for excited states |
|
|
167 | (1) |
|
5.6.1.4 Finite-temperature DFT |
|
|
168 | (1) |
|
5.6.1.5 Time-dependent DFT |
|
|
168 | (1) |
|
5.6.1.6 Linear scaling of DFT |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
172 | (1) |
Chapter 6 Treating solids |
|
173 | (44) |
|
6.1 Pseudopotential approach |
|
|
174 | (7) |
|
6.1.1 Freezing the core electrons |
|
|
175 | (1) |
|
|
175 | (1) |
|
6.1.1.2 Valence electrons |
|
|
175 | (1) |
|
6.1.1.3 Frozen-core approximation |
|
|
176 | (1) |
|
6.1.2 Pseudizing the valence electrons |
|
|
176 | (3) |
|
6.1.2.1 Pseudizing procedure |
|
|
177 | (1) |
|
|
178 | (1) |
|
6.1.3 Various pseudopotentials |
|
|
179 | (2) |
|
6.1.3.1 Norm-conserving PPs |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
6.2 Reducing the calculation size |
|
|
181 | (8) |
|
6.2.1 Supercell approach under periodic boundary conditions |
|
|
182 | (1) |
|
6.2.2 First Brillouin zone and irreducible Brillouin zone |
|
|
183 | (4) |
|
6.2.2.1 Reciprocal lattice |
|
|
183 | (3) |
|
6.2.2.2 The first Brillouin zone |
|
|
186 | (1) |
|
6.2.2.3 Irreducible Brillouin zone |
|
|
186 | (1) |
|
|
187 | (2) |
|
|
188 | (1) |
|
6.2.3.2 Monkhorst-Pack method |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
189 | (6) |
|
|
190 | (1) |
|
6.3.2 Bloch expression with periodic function |
|
|
190 | (2) |
|
6.3.3 Bloch expression with Fourier expansions |
|
|
192 | (3) |
|
6.3.3.1 Fourier expansions |
|
|
192 | (1) |
|
6.3.3.2 Fast Fourier transformation |
|
|
193 | (1) |
|
6.3.3.3 Matrix expression for the KS equations |
|
|
193 | (2) |
|
6.4 Plane wave expansions |
|
|
195 | (8) |
|
|
195 | (1) |
|
|
195 | (1) |
|
6.4.1.2 Plane wave basis set |
|
|
195 | (1) |
|
6.4.2 Plane wave expansions for KS quantities |
|
|
196 | (3) |
|
|
196 | (2) |
|
|
198 | (1) |
|
6.4.2.3 Effective potential |
|
|
198 | (1) |
|
|
198 | (1) |
|
6.4.3 KS orbitals and bands |
|
|
199 | (4) |
|
6.4.3.1 Band structure of free electron |
|
|
200 | (1) |
|
6.4.3.2 Band structure of electrons in solids |
|
|
200 | (2) |
|
6.4.3.3 Density of states |
|
|
202 | (1) |
|
6.5 Some practical topics |
|
|
203 | (3) |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
204 | (2) |
|
6.5.2.1 Gaussian smearing |
|
|
205 | (1) |
|
|
205 | (1) |
|
6.5.2.3 Methfessel-Paxton smearing |
|
|
205 | (1) |
|
6.5.2.4 Tetrahedron method with Blochl corrections |
|
|
206 | (1) |
|
6.6 Practical algorithms for DFT runs |
|
|
206 | (8) |
|
6.6.1 Electronic minimizations |
|
|
206 | (3) |
|
6.6.1.1 Direct diagonalization |
|
|
207 | (1) |
|
6.6.1.2 Iterative Davidson method |
|
|
207 | (1) |
|
|
207 | (2) |
|
6.6.2 Ionic minimizations |
|
|
209 | (1) |
|
6.6.2.1 Hellmann-Feynman forces |
|
|
209 | (1) |
|
6.6.2.2 Minimization methods |
|
|
210 | (1) |
|
6.6.3 Born-Oppenheimer molecular dynamics |
|
|
210 | (1) |
|
6.6.4 Car-Parrinello molecular dynamics |
|
|
211 | (2) |
|
6.6.4.1 CPMD for electronic minimization |
|
|
211 | (1) |
|
6.6.4.2 CPMD for ionic minimization |
|
|
212 | (1) |
|
|
213 | (4) |
|
6.6.5.1 Crack propagation in silicon |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
215 | (2) |
Chapter 7 DFT exercises with Quantum Espresso |
|
217 | (26) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
218 | (5) |
|
|
218 | (1) |
|
|
218 | (2) |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
221 | (2) |
|
|
223 | (4) |
|
|
223 | (1) |
|
|
223 | (1) |
|
|
223 | (1) |
|
|
224 | (3) |
|
|
227 | (3) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
228 | (1) |
|
7.4.4 Results and discussion |
|
|
229 | (1) |
|
|
230 | (5) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (3) |
|
7.6 Si7-vacancy diffusion |
|
|
235 | (6) |
|
|
235 | (1) |
|
|
235 | (1) |
|
7.6.3 Step 1: First image |
|
|
236 | (1) |
|
|
236 | (1) |
|
7.6.5 Step 3: Si7v.NEB20.in |
|
|
237 | (4) |
|
|
241 | (1) |
|
|
242 | (1) |
Chapter 8 DFT exercises with VASP |
|
243 | (56) |
|
|
245 | (2) |
|
8.1.1 General features of VASP |
|
|
245 | (1) |
|
|
245 | (2) |
|
8.1.2.1 Ten things you should not do in a VASP run |
|
|
246 | (1) |
|
|
247 | (5) |
|
|
247 | (2) |
|
|
247 | (1) |
|
|
248 | (1) |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
249 | (1) |
|
|
250 | (2) |
|
|
250 | (1) |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
252 | (5) |
|
|
252 | (3) |
|
|
252 | (2) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
256 | (1) |
|
|
256 | (1) |
|
|
257 | (1) |
|
|
257 | (5) |
|
|
257 | (4) |
|
8.4.1.1 Shell script run.lattice |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
259 | (2) |
|
8.4.2 k-points convergence |
|
|
261 | (1) |
|
|
262 | (6) |
|
8.5.1 Cohesive energy of solid Pt |
|
|
262 | (3) |
|
|
264 | (1) |
|
8.5.2 Vacancy formation energy of Pt |
|
|
265 | (3) |
|
8.5.2.1 Vacancy formation energy |
|
|
265 | (1) |
|
|
266 | (2) |
|
|
268 | (9) |
|
|
268 | (4) |
|
|
268 | (1) |
|
|
269 | (1) |
|
|
269 | (2) |
|
|
271 | (1) |
|
|
272 | (3) |
|
|
272 | (2) |
|
|
274 | (1) |
|
|
274 | (1) |
|
8.6.3 Work function and dipole correction |
|
|
275 | (2) |
|
|
275 | (1) |
|
|
276 | (1) |
|
8.7 Nudged elastic band method |
|
|
277 | (7) |
|
8.7.1 Principle of NEB method |
|
|
278 | (1) |
|
8.7.2 Procedure of the NEB method |
|
|
278 | (2) |
|
8.7.2.1 Initial and final states |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
279 | (1) |
|
8.7.2.4 Force calculation |
|
|
279 | (1) |
|
8.7.2.5 NEB method with climb |
|
|
279 | (1) |
|
|
280 | (4) |
|
8.7.3.1 Pt(111)-slab-O-HCP |
|
|
280 | (1) |
|
8.7.3.2 Run NEB with VTST scripts |
|
|
281 | (1) |
|
|
282 | (2) |
|
|
284 | (3) |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
285 | (2) |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
286 | (1) |
|
8.9 Band structure of silicon |
|
|
287 | (6) |
|
|
288 | (2) |
|
8.9.2 Run for band structure of Si |
|
|
290 | (3) |
|
|
290 | (1) |
|
|
290 | (1) |
|
|
291 | (2) |
|
8.10 Phonon calculation for silicon |
|
|
293 | (4) |
|
|
293 | (1) |
|
8.10.2 Phonon calculations |
|
|
294 | (5) |
|
|
295 | (2) |
|
|
297 | (1) |
|
|
297 | (2) |
Chapter 9 DFT exercises with MedeA-VASP |
|
299 | (20) |
|
|
299 | (1) |
|
|
299 | (1) |
|
|
300 | (4) |
|
|
300 | (1) |
|
|
301 | (1) |
|
|
302 | (2) |
|
|
304 | (3) |
|
|
304 | (1) |
|
9.3.2 Ionic relaxation for supercell with displacements |
|
|
304 | (1) |
|
|
304 | (3) |
|
|
307 | (4) |
|
|
307 | (1) |
|
9.4.2 Surface models for WC and Co |
|
|
308 | (1) |
|
9.4.3 Interface model for WC-Co |
|
|
308 | (1) |
|
|
309 | (2) |
|
9.5 Mg4(Mo6S8)3-barrier energy |
|
|
311 | (3) |
|
|
311 | (3) |
|
|
314 | (1) |
|
|
314 | (1) |
|
|
314 | (4) |
|
|
314 | (2) |
|
|
316 | (1) |
|
|
317 | (1) |
|
|
318 | (1) |
Appendix A: List of symbols and abbreviations |
|
319 | (4) |
Appendix B: Linux basic commands |
|
323 | (2) |
Appendix C: Convenient scripts |
|
325 | (12) |
Appendix D: The Greek alphabet |
|
337 | (2) |
Appendix E: SI prefixes |
|
339 | (2) |
Appendix F: Atomic units |
|
341 | (2) |
Index |
|
343 | |